Cargando…
Rationalization for explainable NLP: a survey
Recent advances in deep learning have improved the performance of many Natural Language Processing (NLP) tasks such as translation, question-answering, and text classification. However, this improvement comes at the expense of model explainability. Black-box models make it difficult to understand th...
Autores principales: | Gurrapu, Sai, Kulkarni, Ajay, Huang, Lifu, Lourentzou, Ismini, Batarseh, Feras A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10560994/ https://www.ncbi.nlm.nih.gov/pubmed/37818431 http://dx.doi.org/10.3389/frai.2023.1225093 |
Ejemplares similares
-
Semantic Representations for NLP Using VerbNet and the Generative Lexicon
por: Brown, Susan Windisch, et al.
Publicado: (2022) -
Case Report: Utilizing AI and NLP to Assist with Healthcare and Rehabilitation During the COVID-19 Pandemic
por: Carriere, Jay, et al.
Publicado: (2021) -
An argumentation semantics for rational human evaluation of arguments
por: Cramer, Marcos, et al.
Publicado: (2023) -
Self-Explaining Social Robots: An Explainable Behavior Generation Architecture for Human-Robot Interaction
por: Stange, Sonja, et al.
Publicado: (2022) -
Editorial: Explainable artificial intelligence for critical healthcare applications
por: He, Zhe, et al.
Publicado: (2023)