Cargando…
Synthesis, crystal structure, and Hirshfeld surface analysis of 3-ferrocenyl-1-(pyridin-2-yl)-1H-pyrazol-5-amine
A key step towards utilizing polynuclear metal-based systems in magnetic device applications involves the careful design of ligands. This strategic planning aims to produce metal assemblies that exhibit some kind of ‘switch’ mechanism. Towards this end, a ligand that incorporates a redox-active func...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10561195/ https://www.ncbi.nlm.nih.gov/pubmed/37817961 http://dx.doi.org/10.1107/S2056989023008101 |
Sumario: | A key step towards utilizing polynuclear metal-based systems in magnetic device applications involves the careful design of ligands. This strategic planning aims to produce metal assemblies that exhibit some kind of ‘switch’ mechanism. Towards this end, a ligand that incorporates a redox-active functional group (ferrocene) is reported. This communication presents the multi-step synthesis, characterization ((1)H and (13)C NMR), and structural analysis (single-crystal X-ray diffraction and Hirshfeld surface analysis) of 3-ferrocenyl-1-(pyridin-2-yl)-1H-pyrazol-5-amine, [Fe(C(5)H(5))(C(13)H(11)N(4))]. Supramolecular features, including π–π stacking and hydrogen bonding are quantified, while a database search reveals the unique combination of molecular moieties, which offer future opportunities for studies to involve simultaneous Lewis acid and base coordination. |
---|