Cargando…
Asynchronous Deep Double Dueling Q-learning for trading-signal execution in limit order book markets
We employ deep reinforcement learning (RL) to train an agent to successfully translate a high-frequency trading signal into a trading strategy that places individual limit orders. Based on the ABIDES limit order book simulator, we build a reinforcement learning OpenAI gym environment and utilize it...
Autores principales: | Nagy, Peer, Calliess, Jan-Peter, Zohren, Stefan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10561243/ https://www.ncbi.nlm.nih.gov/pubmed/37818429 http://dx.doi.org/10.3389/frai.2023.1151003 |
Ejemplares similares
-
Forecasting Quoted Depth With the Limit Order Book
por: Libman, Daniel, et al.
Publicado: (2021) -
The Applicability of Self-Play Algorithms to Trading and Forecasting Financial Markets
por: Posth, Jan-Alexander, et al.
Publicado: (2021) -
On Consensus-Optimality Trade-offs in Collaborative Deep Learning
por: Jiang, Zhanhong, et al.
Publicado: (2021) -
Quantum Prisoner’s Dilemma and High Frequency Trading on the Quantum Cloud
por: Khan, Faisal Shah, et al.
Publicado: (2021) -
A sentiment analysis approach to the prediction of market volatility
por: Deveikyte, Justina, et al.
Publicado: (2022)