Cargando…
Interpreting vision and language generative models with semantic visual priors
When applied to Image-to-text models, explainability methods have two challenges. First, they often provide token-by-token explanations namely, they compute a visual explanation for each token of the generated sequence. This makes explanations expensive to compute and unable to comprehensively expla...
Autores principales: | Cafagna, Michele, Rojas-Barahona, Lina M., van Deemter, Kees, Gatt, Albert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10561255/ https://www.ncbi.nlm.nih.gov/pubmed/37818428 http://dx.doi.org/10.3389/frai.2023.1220476 |
Ejemplares similares
-
What Does a Language-And-Vision Transformer See: The Impact of Semantic Information on Visual Representations
por: Ilinykh, Nikolai, et al.
Publicado: (2021) -
Rethinking symbolic and visual context in Referring Expression Generation
por: Schüz, Simeon, et al.
Publicado: (2023) -
Challenges and Prospects in Vision and Language Research
por: Kafle, Kushal, et al.
Publicado: (2019) -
Identification of offensive language in Urdu using semantic and embedding models
por: Hussain, Sajid, et al.
Publicado: (2022) -
Semantic-visual shared knowledge graph for zero-shot learning
por: Yu, Beibei, et al.
Publicado: (2023)