Cargando…
Microstructural Model of Indacenodithiophene-co-benzothiadiazole Polymer: π-Crossing Interactions and Their Potential Impact on Charge Transport
[Image: see text] Morphological and electronic properties of indacenodithiophene-co-benzothiadiazole (IDTBT) copolymer with varying molecular weights are calculated through combined molecular dynamics (MD) and quantum chemical (QC) methods. Our study focuses on the polymer chain arrangements, interc...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10561260/ https://www.ncbi.nlm.nih.gov/pubmed/37756473 http://dx.doi.org/10.1021/acs.jpclett.3c02305 |
_version_ | 1785117883489058816 |
---|---|
author | Makki, Hesam Burke, Colm A. Troisi, Alessandro |
author_facet | Makki, Hesam Burke, Colm A. Troisi, Alessandro |
author_sort | Makki, Hesam |
collection | PubMed |
description | [Image: see text] Morphological and electronic properties of indacenodithiophene-co-benzothiadiazole (IDTBT) copolymer with varying molecular weights are calculated through combined molecular dynamics (MD) and quantum chemical (QC) methods. Our study focuses on the polymer chain arrangements, interchain connectivity pathways, and interplay between morphological and electronic structure properties of IDTBT. Our models, which are verified against GIWAXS measurements, show a considerable number of BT-BT π–π interactions with a (preferential) perpendicular local orientation of polymer chains due to the steric hindrance of bulky side chains around IDT. Although our models predict a noncrystalline structure for IDTBT, the BT-BT (interchain) crossing points show a considerable degree of short-range order in spatial arrangement which most likely result in a mesh-like structure for the polymer and provide efficient pathways for interchain charge transport. |
format | Online Article Text |
id | pubmed-10561260 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-105612602023-10-10 Microstructural Model of Indacenodithiophene-co-benzothiadiazole Polymer: π-Crossing Interactions and Their Potential Impact on Charge Transport Makki, Hesam Burke, Colm A. Troisi, Alessandro J Phys Chem Lett [Image: see text] Morphological and electronic properties of indacenodithiophene-co-benzothiadiazole (IDTBT) copolymer with varying molecular weights are calculated through combined molecular dynamics (MD) and quantum chemical (QC) methods. Our study focuses on the polymer chain arrangements, interchain connectivity pathways, and interplay between morphological and electronic structure properties of IDTBT. Our models, which are verified against GIWAXS measurements, show a considerable number of BT-BT π–π interactions with a (preferential) perpendicular local orientation of polymer chains due to the steric hindrance of bulky side chains around IDT. Although our models predict a noncrystalline structure for IDTBT, the BT-BT (interchain) crossing points show a considerable degree of short-range order in spatial arrangement which most likely result in a mesh-like structure for the polymer and provide efficient pathways for interchain charge transport. American Chemical Society 2023-09-27 /pmc/articles/PMC10561260/ /pubmed/37756473 http://dx.doi.org/10.1021/acs.jpclett.3c02305 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Makki, Hesam Burke, Colm A. Troisi, Alessandro Microstructural Model of Indacenodithiophene-co-benzothiadiazole Polymer: π-Crossing Interactions and Their Potential Impact on Charge Transport |
title | Microstructural
Model of Indacenodithiophene-co-benzothiadiazole
Polymer: π-Crossing Interactions
and Their Potential Impact on Charge Transport |
title_full | Microstructural
Model of Indacenodithiophene-co-benzothiadiazole
Polymer: π-Crossing Interactions
and Their Potential Impact on Charge Transport |
title_fullStr | Microstructural
Model of Indacenodithiophene-co-benzothiadiazole
Polymer: π-Crossing Interactions
and Their Potential Impact on Charge Transport |
title_full_unstemmed | Microstructural
Model of Indacenodithiophene-co-benzothiadiazole
Polymer: π-Crossing Interactions
and Their Potential Impact on Charge Transport |
title_short | Microstructural
Model of Indacenodithiophene-co-benzothiadiazole
Polymer: π-Crossing Interactions
and Their Potential Impact on Charge Transport |
title_sort | microstructural
model of indacenodithiophene-co-benzothiadiazole
polymer: π-crossing interactions
and their potential impact on charge transport |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10561260/ https://www.ncbi.nlm.nih.gov/pubmed/37756473 http://dx.doi.org/10.1021/acs.jpclett.3c02305 |
work_keys_str_mv | AT makkihesam microstructuralmodelofindacenodithiophenecobenzothiadiazolepolymerpcrossinginteractionsandtheirpotentialimpactonchargetransport AT burkecolma microstructuralmodelofindacenodithiophenecobenzothiadiazolepolymerpcrossinginteractionsandtheirpotentialimpactonchargetransport AT troisialessandro microstructuralmodelofindacenodithiophenecobenzothiadiazolepolymerpcrossinginteractionsandtheirpotentialimpactonchargetransport |