Cargando…
Exact Excited-State Functionals of the Asymmetric Hubbard Dimer
[Image: see text] The exact functionals associated with the (singlet) ground state and the two singlet excited states of the asymmetric Hubbard dimer at half-filling are calculated using both Levy’s constrained search and Lieb’s convex formulation. While the ground-state functional is, as is commonl...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10561271/ https://www.ncbi.nlm.nih.gov/pubmed/37739406 http://dx.doi.org/10.1021/acs.jpclett.3c02052 |
Sumario: | [Image: see text] The exact functionals associated with the (singlet) ground state and the two singlet excited states of the asymmetric Hubbard dimer at half-filling are calculated using both Levy’s constrained search and Lieb’s convex formulation. While the ground-state functional is, as is commonly known, a convex function with respect to the density, the functional associated with the doubly excited state is found to be concave. Also, because the density-potential mapping associated with the first excited state is noninvertible, its “functional” is a partial, multivalued function composed of one concave and one convex branch that correspond to two separate domains of the external potential. Remarkably, it is found that, although the one-to-one mapping between density and external potential may not apply (as in the case of the first excited state), each state-specific energy and corresponding universal functional are “functions” whose derivatives are each other’s inverse, just as in the ground state formalism. |
---|