Cargando…

Multiphase CT radiomics nomogram for preoperatively predicting the WHO/ISUP nuclear grade of small (< 4 cm) clear cell renal cell carcinoma

BACKGROUND: Small (< 4 cm) clear cell renal cell carcinoma (ccRCC) is the most common type of small renal cancer and its prognosis is poor. However, conventional radiological characteristics obtained by computed tomography (CT) are not sufficient to predict the nuclear grade of small ccRCC before...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Yankun, Wang, Xia, Zhao, Xiaoying, Zhu, Chao, Li, Cuiping, Li, Jianying, Wu, Xingwang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10561466/
https://www.ncbi.nlm.nih.gov/pubmed/37814228
http://dx.doi.org/10.1186/s12885-023-11454-5
Descripción
Sumario:BACKGROUND: Small (< 4 cm) clear cell renal cell carcinoma (ccRCC) is the most common type of small renal cancer and its prognosis is poor. However, conventional radiological characteristics obtained by computed tomography (CT) are not sufficient to predict the nuclear grade of small ccRCC before surgery. METHODS: A total of 113 patients with histologically confirmed ccRCC were randomly assigned to the training set (n = 67) and the testing set (n = 46). The baseline and CT imaging data of the patients were evaluated statistically to develop a clinical model. A radiomics model was created, and the radiomics score (Rad-score) was calculated by extracting radiomics features from the CT images. Then, a clinical radiomics nomogram was developed using multivariate logistic regression analysis by combining the Rad-score and critical clinical characteristics. The receiver operating characteristic (ROC) curve was used to evaluate the discrimination of small ccRCC in both the training and testing sets. RESULTS: The radiomics model was constructed using six features obtained from the CT images. The shape and relative enhancement value of the nephrographic phase (REV of the NP) were found to be independent risk factors in the clinical model. The area under the curve (AUC) values for the training and testing sets for the clinical radiomics nomogram were 0.940 and 0.902, respectively. Decision curve analysis (DCA) revealed that the radiomics nomogram model was a better predictor, with the highest degree of coincidence. CONCLUSION: The CT-based radiomics nomogram has the potential to be a noninvasive and preoperative method for predicting the WHO/ISUP grade of small ccRCC. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12885-023-11454-5.