Cargando…
Go with the flow: deep learning methods for autonomous viscosity estimations
Closed-loop experiments can accelerate material discovery by automating both experimental manipulations and decisions that have traditionally been made by researchers. Fast and non-invasive measurements are particularly attractive for closed-loop strategies. Viscosity is a physical property for flui...
Autores principales: | Walker, Michael, Pizzuto, Gabriella, Fakhruldeen, Hatem, Cooper, Andrew I. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
RSC
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10561544/ https://www.ncbi.nlm.nih.gov/pubmed/38013903 http://dx.doi.org/10.1039/d3dd00109a |
Ejemplares similares
-
Estimation Methods for Viscosity, Flow Rate and Pressure from Pump-Motor Assembly Parameters
por: Elenkov, Martin, et al.
Publicado: (2020) -
Numerical study of the thermally stratified hemodynamic nanofluid flow with variable viscosity over a heated wedge
por: Akbar, Noreen Sher
Publicado: (2022) -
Accelerated AI development for autonomous materials synthesis in flow
por: Epps, Robert W., et al.
Publicado: (2021) -
Characterization of bitumen and a novel multiple synergistic method for reducing bitumen viscosity with nanoparticles and surfactants
por: Liu, Yunfeng, et al.
Publicado: (2020) -
A Threshold-Limited Fluorescence Probe for Viscosity
por: Lei, Zuhai, et al.
Publicado: (2019)