Cargando…
Adaptation of Autoencoder for Sparsity Reduction From Clinical Notes Representation Learning
When dealing with clinical text classification on a small dataset, recent studies have confirmed that a well-tuned multilayer perceptron outperforms other generative classifiers, including deep learning ones. To increase the performance of the neural network classifier, feature selection for the lea...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10561736/ https://www.ncbi.nlm.nih.gov/pubmed/37817825 http://dx.doi.org/10.1109/JTEHM.2023.3241635 |
Ejemplares similares
-
Sparsity-Penalized Stacked Denoising Autoencoders for Imputing Single-Cell RNA-seq Data
por: Chi, Weilai, et al.
Publicado: (2020) -
Variational autoencoders learn transferrable representations of metabolomics data
por: Gomari, Daniel P., et al.
Publicado: (2022) -
Representation learning of resting state fMRI with variational autoencoder
por: Kim, Jung-Hoon, et al.
Publicado: (2021) -
Attention Autoencoder for Generative Latent Representational Learning in Anomaly Detection
por: Oluwasanmi, Ariyo, et al.
Publicado: (2021) -
Representation Learning: Recommendation With Knowledge Graph via Triple-Autoencoder
por: Geng, Yishuai, et al.
Publicado: (2022)