Cargando…
Emergency entity relationship extraction for water diversion project based on pre-trained model and multi-featured graph convolutional network
Using information technology to extract emergency decision-making knowledge from emergency plan documents is an essential means to enhance the efficiency and capacity of emergency management. To address the problems of numerous terminologies and complex relationships faced by emergency knowledge ext...
Autores principales: | Wang, Li Hu, Liu, Xue Mei, Liu, Yang, Li, Hai Rui, Liu, Jia QI, Yang, Li Bo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10561837/ https://www.ncbi.nlm.nih.gov/pubmed/37812633 http://dx.doi.org/10.1371/journal.pone.0292004 |
Ejemplares similares
-
Knowledge Graph Entity Alignment with Graph Convolutional Networks: Lessons Learned
por: Berrendorf, Max, et al.
Publicado: (2020) -
RNN-combined graph convolutional network with multi-feature fusion for tuberculosis cavity segmentation
por: Xiao, Zhitao, et al.
Publicado: (2023) -
Convolutional Models with Multi-Feature Fusion for Effective Link Prediction in Knowledge Graph Embedding
por: Guo, Qinglang, et al.
Publicado: (2023) -
Biomedical named entity recognition based on fusion multi-features embedding
por: Li, Meijing, et al.
Publicado: (2023) -
Fusing pre-trained convolutional neural networks features for multi-differentiated subtypes of liver cancer on histopathological images
por: Dong, Xiaogang, et al.
Publicado: (2022)