Cargando…
Sequential autoencoders for feature engineering and pretraining in major depressive disorder risk prediction
OBJECTIVES: We evaluated autoencoders as a feature engineering and pretraining technique to improve major depressive disorder (MDD) prognostic risk prediction. Autoencoders can represent temporal feature relationships not identified by aggregate features. The predictive performance of autoencoders o...
Autores principales: | Jones, Barrett W, Taylor, Warren D, Walsh, Colin G |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10561992/ https://www.ncbi.nlm.nih.gov/pubmed/37818308 http://dx.doi.org/10.1093/jamiaopen/ooad086 |
Ejemplares similares
-
To pretrain or not? A systematic analysis of the benefits of pretraining in diabetic retinopathy
por: Srinivasan, Vignesh, et al.
Publicado: (2022) -
A Promising Approach to Optimizing Sequential Treatment Decisions for Depression: Markov Decision Process
por: Li, Fang, et al.
Publicado: (2022) -
Predictive performance of radiomic models based on features extracted from pretrained deep networks
por: Demircioğlu, Aydin
Publicado: (2022) -
Improving Multichannel Raw Electroencephalography-based Diagnosis of Major Depressive Disorder by Pretraining Deep Learning Models with Single Channel Sleep Stage Data
por: Ellis, Charles A., et al.
Publicado: (2023) -
Comparative effectiveness of medical concept embedding for feature engineering in phenotyping
por: Lee, Junghwan, et al.
Publicado: (2021)