Cargando…
Attention‐gated U‐Net networks for simultaneous axial/sagittal planes segmentation of injured spinal cords
Magnetic resonance imaging is currently the gold standard for the evaluation of spinal cord injuries. Automatic analysis of these injuries is however challenging, as MRI resolutions vary for different planes of analysis and physiological features are often distorted around these injuries. This study...
Autores principales: | Masse‐Gignac, Nicolas, Flórez‐Jiménez, Salomón, Mac‐Thiong, Jean‐Marc, Duong, Luc |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562020/ https://www.ncbi.nlm.nih.gov/pubmed/37735825 http://dx.doi.org/10.1002/acm2.14123 |
Ejemplares similares
-
ASCU-Net: Attention Gate, Spatial and Channel Attention U-Net for Skin Lesion Segmentation
por: Tong, Xiaozhong, et al.
Publicado: (2021) -
XFinger-Net: Pixel-Wise Segmentation Method for Partially Defective Fingerprint Based on Attention Gates and U-Net
por: Wan, Guo Chun, et al.
Publicado: (2020) -
The effect of knee joint rotation in the sagittal and axial plane on the measurement accuracy of coronal alignment of the lower limb
por: Moon, Hyun-Soo, et al.
Publicado: (2020) -
Attention-augmented U-Net (AA-U-Net) for semantic segmentation
por: Rajamani, Kumar T., et al.
Publicado: (2022) -
Fixed Sagittal Plane Imbalance
por: Savage, Jason W., et al.
Publicado: (2014)