Cargando…
Improvement of deep learning prediction model in patient‐specific QA for VMAT with MLC leaf position map and patient's dose distribution
PURPOSE: Deep learning‐based virtual patient‐specific quality assurance (QA) is a novel technique that enables patient QA without measurement. However, this method could be improved by further evaluating the optimal data to be used as input. Therefore, a deep learning‐based model that uses multileaf...
Autores principales: | Tozuka, Ryota, Kadoya, Noriyuki, Tomori, Seiji, Kimura, Yuto, Kajikawa, Tomohiro, Sugai, Yuto, Xiao, Yushan, Jingu, Keiichi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562023/ https://www.ncbi.nlm.nih.gov/pubmed/37261720 http://dx.doi.org/10.1002/acm2.14055 |
Ejemplares similares
-
Evaluation of patient DVH‐based QA metrics for prostate VMAT: correlation between accuracy of estimated 3D patient dose and magnitude of MLC misalignment
por: Kadoya, Noriyuki, et al.
Publicado: (2015) -
Evaluation of deep learning-based deliverable VMAT plan generated by prototype software for automated planning for prostate cancer patients
por: Kadoya, Noriyuki, et al.
Publicado: (2023) -
Anatomy‐based, patient‐specific VMAT QA using EPID or MLC log files
por: Defoor, Dewayne L., et al.
Publicado: (2015) -
On the sensitivity of patient‐specific IMRT QA to MLC positioning errors
por: Yan, Guanghua, et al.
Publicado: (2009) -
Adapting VMAT plans optimized for an HD120 MLC for delivery with a Millennium MLC
por: French, Samuel B., et al.
Publicado: (2017)