Cargando…
Automated treatment planning for proton pencil beam scanning using deep learning dose prediction and dose‐mimicking optimization
PURPOSE: The purpose of this study is to investigate the use of a deep learning architecture for automated treatment planning for proton pencil beam scanning (PBS). METHODS: A 3‐dimensional (3D) U‐Net model has been implemented in a commercial treatment planning system (TPS) that uses contoured regi...
Autores principales: | Maes, Dominic, Holmstrom, Mats, Helander, Rasmus, Saini, Jatinder, Fang, Christine, Bowen, Stephen R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562035/ https://www.ncbi.nlm.nih.gov/pubmed/37334746 http://dx.doi.org/10.1002/acm2.14065 |
Ejemplares similares
-
Validation of automated complex head and neck treatment planning with pencil beam scanning proton therapy
por: Hedrick, Samantha Grace, et al.
Publicado: (2021) -
A comparison of the dose distributions from three proton treatment planning systems in the planning of meningioma patients with single‐field uniform dose pencil beam scanning
por: Doolan, Paul J., et al.
Publicado: (2015) -
Robust Planning for a Patient Treated in Decubitus Position with Proton Pencil Beam Scanning Radiotherapy
por: Tang, Shikui, et al.
Publicado: (2017) -
Pencil Beam Scanning Proton Therapy for Rhabdomyosarcoma of the Biliary Tract
por: Pater, Luke, et al.
Publicado: (2017) -
A comparison of two pencil beam scanning treatment planning systems for proton therapy
por: Langner, Ulrich W., et al.
Publicado: (2017)