Cargando…
Deep flanking sequence engineering for efficient promoter design using DeepSEED
Designing promoters with desirable properties is essential in synthetic biology. Human experts are skilled at identifying strong explicit patterns in small samples, while deep learning models excel at detecting implicit weak patterns in large datasets. Biologists have described the sequence patterns...
Autores principales: | Zhang, Pengcheng, Wang, Haochen, Xu, Hanwen, Wei, Lei, Liu, Liyang, Hu, Zhirui, Wang, Xiaowo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562447/ https://www.ncbi.nlm.nih.gov/pubmed/37813854 http://dx.doi.org/10.1038/s41467-023-41899-y |
Ejemplares similares
-
Synthetic promoter design in Escherichia coli based on a deep generative network
por: Wang, Ye, et al.
Publicado: (2020) -
DISMIR: Deep learning-based noninvasive cancer detection by integrating DNA sequence and methylation information of individual cell-free DNA reads
por: Li, Jiaqi, et al.
Publicado: (2021) -
SESNet: sequence-structure feature-integrated deep learning method for data-efficient protein engineering
por: Li, Mingchen, et al.
Publicado: (2023) -
Impact of Bottom Trawling on Deep-Sea Sediment Properties along the Flanks of a Submarine Canyon
por: Martín, Jacobo, et al.
Publicado: (2014) -
Influence of Igneous Basement on Deep Sediment Microbial Diversity on the Eastern Juan de Fuca Ridge Flank
por: Labonté, Jessica M., et al.
Publicado: (2017)