Cargando…

Association of graph-based spatial features with overall survival status of glioblastoma patients

Glioblastoma is the most common malignant brain tumor with less than 15 months median survival. To aid prognosis, there is a need for decision tools that leverage diagnostic modalities such as MRI to inform survival. In this study, we examine higher-order spatial proximity characteristics from habit...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Joonsang, Narang, Shivali, Martinez, Juan, Rao, Ganesh, Rao, Arvind
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562480/
https://www.ncbi.nlm.nih.gov/pubmed/37813981
http://dx.doi.org/10.1038/s41598-023-44353-7
Descripción
Sumario:Glioblastoma is the most common malignant brain tumor with less than 15 months median survival. To aid prognosis, there is a need for decision tools that leverage diagnostic modalities such as MRI to inform survival. In this study, we examine higher-order spatial proximity characteristics from habitats and propose two graph-based methods (minimum spanning tree and graph run-length matrix) to characterize spatial heterogeneity over tumor MRI-derived intensity habitats and assess their relationships with overall survival as well as the immune signature status of patients with glioblastoma. A data set of 74 patients was studied based on the availability of post-contrast T1-weighted and T2-weighted fluid attenuated inversion recovery (FLAIR) image data in The Cancer Image Archive (TCIA). We assessed the predictive value of MST- and GRLM-derived features from 2D images for prediction of 12-month survival status and immune signature status of patients with glioblastoma via a receiver operating characteristic curve analysis. For 12-month survival prediction using MST-based method, sensitivity and specificity were 0.82 and 0.79 respectively. For GRLM-based method, sensitivity and specificity were 0.73 and 0.77 respectively. For immune status, sensitivity and specificity were 0.91 and 0.69, respectively, for the GRLM-based method with an immune effector. Our results show that the proposed MST- and GRLM-derived features are predictive of 12-month survival status as well as the immune signature status of patients with glioblastoma. To our knowledge, this is the first application of MST- and GRLM-based proximity analyses for the study of radiologically-defined tumor habitats in glioblastoma.