Cargando…
Activated protein C signaling mediates neuroinflammation in seizure induced by pilocarpine
Epilepsy is one of the most common and oldest neurological disorders, characterized by periodic seizures that affect millions globally. Despite its long history, its pathophysiology is not fully understood. Additionally, the current treatment methods have their limitations. Finding a new alternative...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562752/ https://www.ncbi.nlm.nih.gov/pubmed/37823005 http://dx.doi.org/10.1016/j.bbrep.2023.101550 |
Sumario: | Epilepsy is one of the most common and oldest neurological disorders, characterized by periodic seizures that affect millions globally. Despite its long history, its pathophysiology is not fully understood. Additionally, the current treatment methods have their limitations. Finding a new alternative is necessary. Activated Protein C (APC) has been proven to have neurological protection in other neurological disorders; however, there is no study that focuses on the role of APC in seizures. We propose that APC's protective effect could be associated with seizures through inflammation and apoptosis regulation. The results demonstrated that APC's pathway proteins are involved in neuroprotection mechanisms in seizure-induced models by acting on certain inflammatory factors, such as NF-κB and apoptosis proteins. |
---|