Cargando…
Global mangrove soil organic carbon stocks dataset at 30 m resolution for the year 2020 based on spatiotemporal predictive machine learning
This dataset presents global soil organic carbon stocks in mangrove forests at 30 m resolution, predicted for 2020. We used spatiotemporal ensemble machine learning to produce predictions of soil organic carbon content and bulk density (BD) to 1 m soil depth, which were then aggregated to calculate...
Autores principales: | Maxwell, Tania L., Hengl, Tomislav, Parente, Leandro L., Minarik, Robert, Worthington, Thomas A., Bunting, Pete, Smart, Lindsey S., Spalding, Mark D., Landis, Emily |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562832/ https://www.ncbi.nlm.nih.gov/pubmed/37823063 http://dx.doi.org/10.1016/j.dib.2023.109621 |
Ejemplares similares
-
Forest tree species distribution for Europe 2000–2020: mapping potential and realized distributions using spatiotemporal machine learning
por: Bonannella, Carmelo, et al.
Publicado: (2022) -
Biomes of the world under climate change scenarios: increasing aridity and higher temperatures lead to significant shifts in natural vegetation
por: Bonannella, Carmelo, et al.
Publicado: (2023) -
Ecodatacube.eu: analysis-ready open environmental data cube for Europe
por: Witjes, Martijn, et al.
Publicado: (2023) -
A global biophysical typology of mangroves and its relevance for ecosystem structure and deforestation
por: Worthington, Thomas A., et al.
Publicado: (2020) -
Ecuador’s Mangrove Forest Carbon Stocks: A Spatiotemporal Analysis of Living Carbon Holdings and Their Depletion since the Advent of Commercial Aquaculture
por: Hamilton, Stuart E., et al.
Publicado: (2015)