Cargando…

Morphological and molecular insights into the diversity of Leptoconops biting midges from a heavily infested Mediterranean area

The genus Leptoconops Skuse (Diptera: Ceratopogonidae) are blood-sucking midges known to pester humans and domestic animals. In certain Mediterranean areas, midges occur in large numbers during summer and limit the use of recreational areas, also raising serious health and social concerns. Despite s...

Descripción completa

Detalles Bibliográficos
Autores principales: Polidori, Carlo, Gabrieli, Paolo, Arnoldi, Irene, Negri, Agata, Soresinetti, Laura, Faggiana, Simone, Ferrari, Andrea, Ronchetti, Federico, Brilli, Matteo, Bandi, Claudio, Epis, Sara
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562859/
https://www.ncbi.nlm.nih.gov/pubmed/37822789
http://dx.doi.org/10.1016/j.crpvbd.2023.100142
_version_ 1785118223433203712
author Polidori, Carlo
Gabrieli, Paolo
Arnoldi, Irene
Negri, Agata
Soresinetti, Laura
Faggiana, Simone
Ferrari, Andrea
Ronchetti, Federico
Brilli, Matteo
Bandi, Claudio
Epis, Sara
author_facet Polidori, Carlo
Gabrieli, Paolo
Arnoldi, Irene
Negri, Agata
Soresinetti, Laura
Faggiana, Simone
Ferrari, Andrea
Ronchetti, Federico
Brilli, Matteo
Bandi, Claudio
Epis, Sara
author_sort Polidori, Carlo
collection PubMed
description The genus Leptoconops Skuse (Diptera: Ceratopogonidae) are blood-sucking midges known to pester humans and domestic animals. In certain Mediterranean areas, midges occur in large numbers during summer and limit the use of recreational areas, also raising serious health and social concerns. Despite such impact, the diversity and distribution of Leptoconops in Maremma Regional Park (Tuscany Region, Italy), a heavily infested area, is not well known, and neither molecular nor detailed morphological studies exist. We sampled adult midge females in six areas and used high-resolution digital stereomicroscopy and scanning electron microscopy to identify species and investigate the morphology of structures involved in host searching/recognition (antennae and maxillary palps) and host attack (mouthparts). We also performed energy-dispersive X-ray spectroscopy to characterize the elemental composition of mouthparts. Finally, the cytochrome c oxidase subunit 1 (cox1) gene was amplified and sequenced, to confirm species identification of collected specimens. We identified two species: Leptoconops (L.) irritans Noé and Leptoconops (L.) noei Clastrier & Coluzzi, with the former being more frequently sampled than the latter and closer to sea coast and rivers. The antennal segments appeared slightly more globular in L. noei than in L. irritans. Five types of trichoid, basiconic and chaetic sensilla were found on the antennae, with some differences between the two species. Mouthparts had the labellum visibly larger in L. noei compared with L. irritans. The maxillary palps possessed a pit filled with bulb-shaped sensilla, which appeared denser in L. noei than in L. irritans. Mouthpart cuticle included Calcium (Ca) and Aluminum (Al) at small but significant concentrations (0.3–1.0%) in both species. Our results suggest that the limited but appreciable differences in sensory system between the studied species of Leptoconops and other Ceratopogonidae may reflect different host or habitat preferences, a scenario potentially suggested also by preliminarily data on their distribution in the studied area. The presence of Ca and Al in the cuticle of mouthparts may help host skin drilling during bite activity. Finally, the gene sequences obtained in this study provide a first reference for future investigations on the taxonomy and dispersal patterns of Leptoconops spp. in the Mediterranean area.
format Online
Article
Text
id pubmed-10562859
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-105628592023-10-11 Morphological and molecular insights into the diversity of Leptoconops biting midges from a heavily infested Mediterranean area Polidori, Carlo Gabrieli, Paolo Arnoldi, Irene Negri, Agata Soresinetti, Laura Faggiana, Simone Ferrari, Andrea Ronchetti, Federico Brilli, Matteo Bandi, Claudio Epis, Sara Curr Res Parasitol Vector Borne Dis Research Article The genus Leptoconops Skuse (Diptera: Ceratopogonidae) are blood-sucking midges known to pester humans and domestic animals. In certain Mediterranean areas, midges occur in large numbers during summer and limit the use of recreational areas, also raising serious health and social concerns. Despite such impact, the diversity and distribution of Leptoconops in Maremma Regional Park (Tuscany Region, Italy), a heavily infested area, is not well known, and neither molecular nor detailed morphological studies exist. We sampled adult midge females in six areas and used high-resolution digital stereomicroscopy and scanning electron microscopy to identify species and investigate the morphology of structures involved in host searching/recognition (antennae and maxillary palps) and host attack (mouthparts). We also performed energy-dispersive X-ray spectroscopy to characterize the elemental composition of mouthparts. Finally, the cytochrome c oxidase subunit 1 (cox1) gene was amplified and sequenced, to confirm species identification of collected specimens. We identified two species: Leptoconops (L.) irritans Noé and Leptoconops (L.) noei Clastrier & Coluzzi, with the former being more frequently sampled than the latter and closer to sea coast and rivers. The antennal segments appeared slightly more globular in L. noei than in L. irritans. Five types of trichoid, basiconic and chaetic sensilla were found on the antennae, with some differences between the two species. Mouthparts had the labellum visibly larger in L. noei compared with L. irritans. The maxillary palps possessed a pit filled with bulb-shaped sensilla, which appeared denser in L. noei than in L. irritans. Mouthpart cuticle included Calcium (Ca) and Aluminum (Al) at small but significant concentrations (0.3–1.0%) in both species. Our results suggest that the limited but appreciable differences in sensory system between the studied species of Leptoconops and other Ceratopogonidae may reflect different host or habitat preferences, a scenario potentially suggested also by preliminarily data on their distribution in the studied area. The presence of Ca and Al in the cuticle of mouthparts may help host skin drilling during bite activity. Finally, the gene sequences obtained in this study provide a first reference for future investigations on the taxonomy and dispersal patterns of Leptoconops spp. in the Mediterranean area. Elsevier 2023-09-23 /pmc/articles/PMC10562859/ /pubmed/37822789 http://dx.doi.org/10.1016/j.crpvbd.2023.100142 Text en © 2023 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Research Article
Polidori, Carlo
Gabrieli, Paolo
Arnoldi, Irene
Negri, Agata
Soresinetti, Laura
Faggiana, Simone
Ferrari, Andrea
Ronchetti, Federico
Brilli, Matteo
Bandi, Claudio
Epis, Sara
Morphological and molecular insights into the diversity of Leptoconops biting midges from a heavily infested Mediterranean area
title Morphological and molecular insights into the diversity of Leptoconops biting midges from a heavily infested Mediterranean area
title_full Morphological and molecular insights into the diversity of Leptoconops biting midges from a heavily infested Mediterranean area
title_fullStr Morphological and molecular insights into the diversity of Leptoconops biting midges from a heavily infested Mediterranean area
title_full_unstemmed Morphological and molecular insights into the diversity of Leptoconops biting midges from a heavily infested Mediterranean area
title_short Morphological and molecular insights into the diversity of Leptoconops biting midges from a heavily infested Mediterranean area
title_sort morphological and molecular insights into the diversity of leptoconops biting midges from a heavily infested mediterranean area
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562859/
https://www.ncbi.nlm.nih.gov/pubmed/37822789
http://dx.doi.org/10.1016/j.crpvbd.2023.100142
work_keys_str_mv AT polidoricarlo morphologicalandmolecularinsightsintothediversityofleptoconopsbitingmidgesfromaheavilyinfestedmediterraneanarea
AT gabrielipaolo morphologicalandmolecularinsightsintothediversityofleptoconopsbitingmidgesfromaheavilyinfestedmediterraneanarea
AT arnoldiirene morphologicalandmolecularinsightsintothediversityofleptoconopsbitingmidgesfromaheavilyinfestedmediterraneanarea
AT negriagata morphologicalandmolecularinsightsintothediversityofleptoconopsbitingmidgesfromaheavilyinfestedmediterraneanarea
AT soresinettilaura morphologicalandmolecularinsightsintothediversityofleptoconopsbitingmidgesfromaheavilyinfestedmediterraneanarea
AT faggianasimone morphologicalandmolecularinsightsintothediversityofleptoconopsbitingmidgesfromaheavilyinfestedmediterraneanarea
AT ferrariandrea morphologicalandmolecularinsightsintothediversityofleptoconopsbitingmidgesfromaheavilyinfestedmediterraneanarea
AT ronchettifederico morphologicalandmolecularinsightsintothediversityofleptoconopsbitingmidgesfromaheavilyinfestedmediterraneanarea
AT brillimatteo morphologicalandmolecularinsightsintothediversityofleptoconopsbitingmidgesfromaheavilyinfestedmediterraneanarea
AT bandiclaudio morphologicalandmolecularinsightsintothediversityofleptoconopsbitingmidgesfromaheavilyinfestedmediterraneanarea
AT epissara morphologicalandmolecularinsightsintothediversityofleptoconopsbitingmidgesfromaheavilyinfestedmediterraneanarea