Cargando…
An interpretable time series machine learning method for varying forecast and nowcast lengths in wastewater-based epidemiology
Wastewater-based epidemiology has emerged as a viable tool for monitoring disease prevalence in a population. This paper details a time series machine learning (TSML) method for predicting COVID-19 cases from wastewater and environmental variables. The TSML method utilizes a number of techniques to...
Autores principales: | Lai, Mallory, Wulff, Shaun S., Cao, Yongtao, Robinson, Timothy J., Rajapaksha, Rasika |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562867/ https://www.ncbi.nlm.nih.gov/pubmed/37822674 http://dx.doi.org/10.1016/j.mex.2023.102382 |
Ejemplares similares
-
Mining Google Trends data for nowcasting and forecasting colorectal cancer (CRC) prevalence
por: Tudor, Cristiana, et al.
Publicado: (2023) -
An interpretable machine learning model for diagnosis of Alzheimer's disease
por: Das, Diptesh, et al.
Publicado: (2019) -
Nowcasting and forecasting COVID-19 waves: the recursive and stochastic nature of transmission
por: Albani, V. V. L., et al.
Publicado: (2022) -
Skilful nowcasting of extreme precipitation with NowcastNet
por: Zhang, Yuchen, et al.
Publicado: (2023) -
Forecasting stock indices with the COVID-19 infection rate as an exogenous variable
por: Patwary, Mohammad Saha A., et al.
Publicado: (2023)