Cargando…

Structural basis of transcription factor YhaJ for DNT detection

Detection of landmines without harming personnel is a global issue. The bacterial transcription factor YhaJ selectively detects metabolites of explosives, and it can be used as a key component of DNT biosensors. However, the wild-type YhaJ has a binding affinity that is not sufficient for the detect...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Myeongbin, Kang, Ryun, Jeon, Tae Jin, Ryu, Seong Eon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562874/
https://www.ncbi.nlm.nih.gov/pubmed/37822509
http://dx.doi.org/10.1016/j.isci.2023.107984
Descripción
Sumario:Detection of landmines without harming personnel is a global issue. The bacterial transcription factor YhaJ selectively detects metabolites of explosives, and it can be used as a key component of DNT biosensors. However, the wild-type YhaJ has a binding affinity that is not sufficient for the detection of trace amounts of explosives leaked from landmines buried in the soil. Here, we report crystal structures of the effector-binding domain of YhaJ in both the apo- and effector-bound forms. A structural comparison of the two forms revealed that the loop above the primary effector-binding site significantly switches its conformation upon effector binding. The primary effector-binding site involves hydrophobic and polar interactions, having specificity to hydroxyl-substituted benzene compounds. The structures explain the mechanism of activity-enhancing mutations and provide information for the rational engineering of YhaJ biosensors for the sensitive detection of explosives.