Cargando…
Machine learning clinical prediction models for acute kidney injury: the impact of baseline creatinine on prediction efficacy
BACKGROUND: There are many Machine Learning (ML) models which predict acute kidney injury (AKI) for hospitalised patients. While a primary goal of these models is to support clinical decision-making, the adoption of inconsistent methods of estimating baseline serum creatinine (sCr) may result in a p...
Autores principales: | Kamel Rahimi, Amir, Ghadimi, Moji, van der Vegt, Anton H., Canfell, Oliver J., Pole, Jason D., Sullivan, Clair, Shrapnel, Sally |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10563357/ https://www.ncbi.nlm.nih.gov/pubmed/37814311 http://dx.doi.org/10.1186/s12911-023-02306-0 |
Ejemplares similares
-
Toward a Learning Health Care System: A Systematic Review and Evidence-Based Conceptual Framework for Implementation of Clinical Analytics in a Digital Hospital
por: Lim, Han Chang, et al.
Publicado: (2022) -
Association of Country Income Level With the Characteristics and Outcomes of Critically Ill Patients Hospitalized With Acute Kidney Injury and COVID-19
por: Wainstein, Marina, et al.
Publicado: (2023) -
Systematic review of externally validated machine learning models for predicting acute kidney injury in general hospital patients
por: Wainstein, Marina, et al.
Publicado: (2023) -
Machine learning can accurately predict pre-admission baseline hemoglobin and creatinine in intensive care patients
por: Dauvin, Antonin, et al.
Publicado: (2019) -
Creatinine-based definitions: from baseline creatinine to serum creatinine adjustment in intensive care
por: De Rosa, Silvia, et al.
Publicado: (2016)