Cargando…
A Prussian blue analog as a decorporation agent for the simultaneous removal of cesium and reactive oxygen species
Radioactive cesium (Cs) is a significant concern due to its role as a major byproduct of nuclear fission and its potential for radioactive contamination. Internal contamination with radioactive Cs is characterized by immoderate production of reactive oxygen species (ROS), resulting in severe radiati...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
RSC
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10563846/ https://www.ncbi.nlm.nih.gov/pubmed/37822904 http://dx.doi.org/10.1039/d3na00388d |
_version_ | 1785118422250553344 |
---|---|
author | Xue, Tingyu Liu, Fang Lu, Bin Dong, Qingrong Zhao, Bin Chen, Tianqing Zhang, Kun Li, Jianguo Du, Jiangfeng |
author_facet | Xue, Tingyu Liu, Fang Lu, Bin Dong, Qingrong Zhao, Bin Chen, Tianqing Zhang, Kun Li, Jianguo Du, Jiangfeng |
author_sort | Xue, Tingyu |
collection | PubMed |
description | Radioactive cesium (Cs) is a significant concern due to its role as a major byproduct of nuclear fission and its potential for radioactive contamination. Internal contamination with radioactive Cs is characterized by immoderate production of reactive oxygen species (ROS), resulting in severe radiation damage. Therefore, the development of therapeutic strategies should focus on enhancing the excretion of radioactive Cs and reducing radiation-induced oxidative damage. However, current therapeutic drugs like Prussian blue (PB) have limited efficacy in addressing these issues. In this study, we present Cu(3)[Fe(CN)(6)](2) (CuFe) nanoparticles, a Prussian blue analog (PBA), which can not only efficiently sequester Cs but also exhibit resistance against radiation damage. The results of the adsorption studies demonstrate that CuFe outperforms PB in terms of adsorption performance. Further mechanistic investigations indicate that the increased adsorption capacity of CuFe may be attributed to the presence of additional defects resulting from the [Fe(CN)(6)] missing linkers. Moreover, CuFe mimics the functions of catalase (CAT) and superoxide dismutase (SOD) by effectively eliminating O(2)˙(−) and H(2)O(2) while scavenging ˙OH, thereby mitigating ROS induced by radiative Cs. Importantly, in vivo study confirms the efficient Cs decorporation capability of CuFe. The fecal cumulative excretion rate of CuFe reaches 69.5%, which is 1.45 times higher than that of PB (48.8%). These findings demonstrate that CuFe exhibits excellent Cs removal performance and ROS scavenging ability, making it an attractive candidate for the treatment of Cs contamination. |
format | Online Article Text |
id | pubmed-10563846 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | RSC |
record_format | MEDLINE/PubMed |
spelling | pubmed-105638462023-10-11 A Prussian blue analog as a decorporation agent for the simultaneous removal of cesium and reactive oxygen species Xue, Tingyu Liu, Fang Lu, Bin Dong, Qingrong Zhao, Bin Chen, Tianqing Zhang, Kun Li, Jianguo Du, Jiangfeng Nanoscale Adv Chemistry Radioactive cesium (Cs) is a significant concern due to its role as a major byproduct of nuclear fission and its potential for radioactive contamination. Internal contamination with radioactive Cs is characterized by immoderate production of reactive oxygen species (ROS), resulting in severe radiation damage. Therefore, the development of therapeutic strategies should focus on enhancing the excretion of radioactive Cs and reducing radiation-induced oxidative damage. However, current therapeutic drugs like Prussian blue (PB) have limited efficacy in addressing these issues. In this study, we present Cu(3)[Fe(CN)(6)](2) (CuFe) nanoparticles, a Prussian blue analog (PBA), which can not only efficiently sequester Cs but also exhibit resistance against radiation damage. The results of the adsorption studies demonstrate that CuFe outperforms PB in terms of adsorption performance. Further mechanistic investigations indicate that the increased adsorption capacity of CuFe may be attributed to the presence of additional defects resulting from the [Fe(CN)(6)] missing linkers. Moreover, CuFe mimics the functions of catalase (CAT) and superoxide dismutase (SOD) by effectively eliminating O(2)˙(−) and H(2)O(2) while scavenging ˙OH, thereby mitigating ROS induced by radiative Cs. Importantly, in vivo study confirms the efficient Cs decorporation capability of CuFe. The fecal cumulative excretion rate of CuFe reaches 69.5%, which is 1.45 times higher than that of PB (48.8%). These findings demonstrate that CuFe exhibits excellent Cs removal performance and ROS scavenging ability, making it an attractive candidate for the treatment of Cs contamination. RSC 2023-09-13 /pmc/articles/PMC10563846/ /pubmed/37822904 http://dx.doi.org/10.1039/d3na00388d Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Xue, Tingyu Liu, Fang Lu, Bin Dong, Qingrong Zhao, Bin Chen, Tianqing Zhang, Kun Li, Jianguo Du, Jiangfeng A Prussian blue analog as a decorporation agent for the simultaneous removal of cesium and reactive oxygen species |
title | A Prussian blue analog as a decorporation agent for the simultaneous removal of cesium and reactive oxygen species |
title_full | A Prussian blue analog as a decorporation agent for the simultaneous removal of cesium and reactive oxygen species |
title_fullStr | A Prussian blue analog as a decorporation agent for the simultaneous removal of cesium and reactive oxygen species |
title_full_unstemmed | A Prussian blue analog as a decorporation agent for the simultaneous removal of cesium and reactive oxygen species |
title_short | A Prussian blue analog as a decorporation agent for the simultaneous removal of cesium and reactive oxygen species |
title_sort | prussian blue analog as a decorporation agent for the simultaneous removal of cesium and reactive oxygen species |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10563846/ https://www.ncbi.nlm.nih.gov/pubmed/37822904 http://dx.doi.org/10.1039/d3na00388d |
work_keys_str_mv | AT xuetingyu aprussianblueanalogasadecorporationagentforthesimultaneousremovalofcesiumandreactiveoxygenspecies AT liufang aprussianblueanalogasadecorporationagentforthesimultaneousremovalofcesiumandreactiveoxygenspecies AT lubin aprussianblueanalogasadecorporationagentforthesimultaneousremovalofcesiumandreactiveoxygenspecies AT dongqingrong aprussianblueanalogasadecorporationagentforthesimultaneousremovalofcesiumandreactiveoxygenspecies AT zhaobin aprussianblueanalogasadecorporationagentforthesimultaneousremovalofcesiumandreactiveoxygenspecies AT chentianqing aprussianblueanalogasadecorporationagentforthesimultaneousremovalofcesiumandreactiveoxygenspecies AT zhangkun aprussianblueanalogasadecorporationagentforthesimultaneousremovalofcesiumandreactiveoxygenspecies AT lijianguo aprussianblueanalogasadecorporationagentforthesimultaneousremovalofcesiumandreactiveoxygenspecies AT dujiangfeng aprussianblueanalogasadecorporationagentforthesimultaneousremovalofcesiumandreactiveoxygenspecies AT xuetingyu prussianblueanalogasadecorporationagentforthesimultaneousremovalofcesiumandreactiveoxygenspecies AT liufang prussianblueanalogasadecorporationagentforthesimultaneousremovalofcesiumandreactiveoxygenspecies AT lubin prussianblueanalogasadecorporationagentforthesimultaneousremovalofcesiumandreactiveoxygenspecies AT dongqingrong prussianblueanalogasadecorporationagentforthesimultaneousremovalofcesiumandreactiveoxygenspecies AT zhaobin prussianblueanalogasadecorporationagentforthesimultaneousremovalofcesiumandreactiveoxygenspecies AT chentianqing prussianblueanalogasadecorporationagentforthesimultaneousremovalofcesiumandreactiveoxygenspecies AT zhangkun prussianblueanalogasadecorporationagentforthesimultaneousremovalofcesiumandreactiveoxygenspecies AT lijianguo prussianblueanalogasadecorporationagentforthesimultaneousremovalofcesiumandreactiveoxygenspecies AT dujiangfeng prussianblueanalogasadecorporationagentforthesimultaneousremovalofcesiumandreactiveoxygenspecies |