Cargando…

Development and characterization of rice bran-gum Arabic based encapsulated biofertilizer for enhanced shelf life and controlled bacterial release

INTRODUCTION: Currently, microbe-based approaches are being tested to address nutrient deficiencies and enhance nutrient use efficiency in crops. However, these bioinoculants have been unsuccessful at the commercial level due to differences in field and in-vivo conditions. Thus, to enhance bacterial...

Descripción completa

Detalles Bibliográficos
Autores principales: Kaur, Rajinder, Kaur, Sukhminderjit, Dwibedi, Vagish, Kaur, Charanjit, Akhtar, Nadeem, Alzahrani, Abdulhakeem
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10563852/
https://www.ncbi.nlm.nih.gov/pubmed/37822736
http://dx.doi.org/10.3389/fmicb.2023.1267730
_version_ 1785118423636770816
author Kaur, Rajinder
Kaur, Sukhminderjit
Dwibedi, Vagish
Kaur, Charanjit
Akhtar, Nadeem
Alzahrani, Abdulhakeem
author_facet Kaur, Rajinder
Kaur, Sukhminderjit
Dwibedi, Vagish
Kaur, Charanjit
Akhtar, Nadeem
Alzahrani, Abdulhakeem
author_sort Kaur, Rajinder
collection PubMed
description INTRODUCTION: Currently, microbe-based approaches are being tested to address nutrient deficiencies and enhance nutrient use efficiency in crops. However, these bioinoculants have been unsuccessful at the commercial level due to differences in field and in-vivo conditions. Thus, to enhance bacterial stability, microbial formulations are considered, which will provide an appropriate microenvironment and protection to the bacteria ensuring better rhizospheric-colonization. METHODS: The present study aimed to develop a phosphobacterium-based encapsulated biofertilizer using the ion-chelation method, wherein a bacterial strain, Myroid gitamensis was mixed with a composite solution containing rice bran (RB), gum Arabic (GA), tricalcium phosphate, and alginate to develop low-cost and slow-release microbeads. The developed microbead was studied for encapsulation efficiency, shape, size, external morphology, shelf-life, soil release behavior, and biodegradability and characterized using SEM, FTIR, and XRD. Further, the wheat growth-promoting potential of microbeads was studied. RESULTS: The developed microbeads showed an encapsulation efficiency of 94.11%. The air-dried beads stored at 4°C were favorable for bacterial survival for upto 6 months. Microbeads showed 99.75% degradation within 110 days of incubation showing the bio-sustainable nature of the beads. The application of dried formulations to the pot-grown wheat seedlings resulted in a higher germination rate, shoot length, root length, fresh weight, dry weight of the seedlings, and higher potassium and phosphorus uptake in wheat. DISCUSSION: This study, for the first time, provides evidence that compared to liquid biofertilizers, the RB-GA encapsulated bacteria have better potential of enhancing wheat growth and can be foreseen as a future fertilizer option for wheat.
format Online
Article
Text
id pubmed-10563852
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-105638522023-10-11 Development and characterization of rice bran-gum Arabic based encapsulated biofertilizer for enhanced shelf life and controlled bacterial release Kaur, Rajinder Kaur, Sukhminderjit Dwibedi, Vagish Kaur, Charanjit Akhtar, Nadeem Alzahrani, Abdulhakeem Front Microbiol Microbiology INTRODUCTION: Currently, microbe-based approaches are being tested to address nutrient deficiencies and enhance nutrient use efficiency in crops. However, these bioinoculants have been unsuccessful at the commercial level due to differences in field and in-vivo conditions. Thus, to enhance bacterial stability, microbial formulations are considered, which will provide an appropriate microenvironment and protection to the bacteria ensuring better rhizospheric-colonization. METHODS: The present study aimed to develop a phosphobacterium-based encapsulated biofertilizer using the ion-chelation method, wherein a bacterial strain, Myroid gitamensis was mixed with a composite solution containing rice bran (RB), gum Arabic (GA), tricalcium phosphate, and alginate to develop low-cost and slow-release microbeads. The developed microbead was studied for encapsulation efficiency, shape, size, external morphology, shelf-life, soil release behavior, and biodegradability and characterized using SEM, FTIR, and XRD. Further, the wheat growth-promoting potential of microbeads was studied. RESULTS: The developed microbeads showed an encapsulation efficiency of 94.11%. The air-dried beads stored at 4°C were favorable for bacterial survival for upto 6 months. Microbeads showed 99.75% degradation within 110 days of incubation showing the bio-sustainable nature of the beads. The application of dried formulations to the pot-grown wheat seedlings resulted in a higher germination rate, shoot length, root length, fresh weight, dry weight of the seedlings, and higher potassium and phosphorus uptake in wheat. DISCUSSION: This study, for the first time, provides evidence that compared to liquid biofertilizers, the RB-GA encapsulated bacteria have better potential of enhancing wheat growth and can be foreseen as a future fertilizer option for wheat. Frontiers Media S.A. 2023-09-19 /pmc/articles/PMC10563852/ /pubmed/37822736 http://dx.doi.org/10.3389/fmicb.2023.1267730 Text en Copyright © 2023 Kaur, Kaur, Dwibedi, Kaur, Akhtar and Alzahrani. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Microbiology
Kaur, Rajinder
Kaur, Sukhminderjit
Dwibedi, Vagish
Kaur, Charanjit
Akhtar, Nadeem
Alzahrani, Abdulhakeem
Development and characterization of rice bran-gum Arabic based encapsulated biofertilizer for enhanced shelf life and controlled bacterial release
title Development and characterization of rice bran-gum Arabic based encapsulated biofertilizer for enhanced shelf life and controlled bacterial release
title_full Development and characterization of rice bran-gum Arabic based encapsulated biofertilizer for enhanced shelf life and controlled bacterial release
title_fullStr Development and characterization of rice bran-gum Arabic based encapsulated biofertilizer for enhanced shelf life and controlled bacterial release
title_full_unstemmed Development and characterization of rice bran-gum Arabic based encapsulated biofertilizer for enhanced shelf life and controlled bacterial release
title_short Development and characterization of rice bran-gum Arabic based encapsulated biofertilizer for enhanced shelf life and controlled bacterial release
title_sort development and characterization of rice bran-gum arabic based encapsulated biofertilizer for enhanced shelf life and controlled bacterial release
topic Microbiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10563852/
https://www.ncbi.nlm.nih.gov/pubmed/37822736
http://dx.doi.org/10.3389/fmicb.2023.1267730
work_keys_str_mv AT kaurrajinder developmentandcharacterizationofricebrangumarabicbasedencapsulatedbiofertilizerforenhancedshelflifeandcontrolledbacterialrelease
AT kaursukhminderjit developmentandcharacterizationofricebrangumarabicbasedencapsulatedbiofertilizerforenhancedshelflifeandcontrolledbacterialrelease
AT dwibedivagish developmentandcharacterizationofricebrangumarabicbasedencapsulatedbiofertilizerforenhancedshelflifeandcontrolledbacterialrelease
AT kaurcharanjit developmentandcharacterizationofricebrangumarabicbasedencapsulatedbiofertilizerforenhancedshelflifeandcontrolledbacterialrelease
AT akhtarnadeem developmentandcharacterizationofricebrangumarabicbasedencapsulatedbiofertilizerforenhancedshelflifeandcontrolledbacterialrelease
AT alzahraniabdulhakeem developmentandcharacterizationofricebrangumarabicbasedencapsulatedbiofertilizerforenhancedshelflifeandcontrolledbacterialrelease