Cargando…
MRI feature-based radiomics models to predict treatment outcome after stereotactic body radiotherapy for spinal metastases
OBJECTIVE: This study aimed to extract radiomics features from MRI using machine learning (ML) algorithms and integrate them with clinical features to build response prediction models for patients with spinal metastases undergoing stereotactic body radiotherapy (SBRT). METHODS: Patients with spinal...
Autores principales: | Chen, Yongye, Qin, Siyuan, Zhao, Weili, Wang, Qizheng, Liu, Ke, Xin, Peijin, Yuan, Huishu, Zhuang, Hongqing, Lang, Ning |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10564690/ https://www.ncbi.nlm.nih.gov/pubmed/37817044 http://dx.doi.org/10.1186/s13244-023-01523-5 |
Ejemplares similares
-
Differentiation of predominantly osteolytic from osteoblastic spinal metastases based on standard magnetic resonance imaging sequences: a comparison of radiomics model versus semantic features logistic regression model findings
por: Liu, Ke, et al.
Publicado: (2022) -
Prediction of Primary Tumor Sites in Spinal Metastases Using a ResNet-50 Convolutional Neural Network Based on MRI
por: Liu, Ke, et al.
Publicado: (2023) -
Prognostic Value and Quantitative CT Analysis in RANKL Expression of Spinal GCTB in the Denosumab Era: A Machine Learning Approach
por: Wang, Qizheng, et al.
Publicado: (2022) -
Precision Stereotactic Radiotherapy for Spinal Tumors: Mechanism, Efficacy, and Issues
por: Zhuang, Hongqing, et al.
Publicado: (2020) -
A Multiparametric Method Based on Clinical and CT-Based Radiomics to Predict the Expression of p53 and VEGF in Patients With Spinal Giant Cell Tumor of Bone
por: Wang, Qizheng, et al.
Publicado: (2022)