Cargando…
A hybrid attention and dilated convolution framework for entity and relation extraction and mining
Mining entity and relation from unstructured text is important for knowledge graph construction and expansion. Recent approaches have achieved promising performance while still suffering from inherent limitations, such as the computation efficiency and redundancy of relation prediction. In this pape...
Autores principales: | Shan, Yuxiang, Lu, Hailiang, Lou, Weidong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10564730/ https://www.ncbi.nlm.nih.gov/pubmed/37816797 http://dx.doi.org/10.1038/s41598-023-40474-1 |
Ejemplares similares
-
Utilizing Entity-Based Gated Convolution and Multilevel Sentence Attention to Improve Distantly Supervised Relation Extraction
por: Yi, Qian, et al.
Publicado: (2021) -
A method of radar echo extrapolation based on dilated convolution and attention convolution
por: Shen, Xiajiong, et al.
Publicado: (2022) -
HADCNet: Automatic segmentation of COVID-19 infection based on a hybrid attention dense connected network with dilated convolution
por: Chen, Ying, et al.
Publicado: (2022) -
MarkerGenie: an NLP-enabled text-mining system for biomedical entity relation extraction
por: Gu, Wenhao, et al.
Publicado: (2022) -
D2A U-Net: Automatic segmentation of COVID-19 CT slices based on dual attention and hybrid dilated convolution
por: Zhao, Xiangyu, et al.
Publicado: (2021)