Cargando…
Coupling of machine learning and remote sensing for soil salinity mapping in coastal area of Bangladesh
Soil salinity is a pressing issue for sustainable food security in coastal regions. However, the coupling of machine learning and remote sensing was seldom employed for soil salinity mapping in the coastal areas of Bangladesh. The research aims to estimate the soil salinity level in a southwestern c...
Autores principales: | Sarkar, Showmitra Kumar, Rudra, Rhyme Rubayet, Sohan, Abid Reza, Das, Palash Chandra, Ekram, Khondaker Mohammed Mohiuddin, Talukdar, Swapan, Rahman, Atiqur, Alam, Edris, Islam, Md Kamrul, Islam, Abu Reza Md. Towfiqul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10564761/ https://www.ncbi.nlm.nih.gov/pubmed/37816754 http://dx.doi.org/10.1038/s41598-023-44132-4 |
Ejemplares similares
-
Artificial neural network for flood susceptibility mapping in Bangladesh
por: Rudra, Rhyme Rubayet, et al.
Publicado: (2023) -
Climate change in Bangladesh: Temperature and rainfall climatology of Bangladesh for 1949–2013 and its implication on rice yield
por: Alam, Edris, et al.
Publicado: (2023) -
Spatial modeling of COVID-19 transmission in Bangladesh
por: Sarkar, Showmitra Kumar, et al.
Publicado: (2021) -
Computational assessment of groundwater salinity distribution within coastal multi-aquifers of Bangladesh
por: Jamei, Mehdi, et al.
Publicado: (2022) -
Analyzing trend and forecasting of rainfall changes in India using non-parametrical and machine learning approaches
por: Praveen, Bushra, et al.
Publicado: (2020)