Cargando…
Predicting individual cases of major adolescent psychiatric conditions with artificial intelligence
Three-quarters of lifetime mental illness occurs by the age of 24, but relatively little is known about how to robustly identify youth at risk to target intervention efforts known to improve outcomes. Barriers to knowledge have included obtaining robust predictions while simultaneously analyzing lar...
Autores principales: | de Lacy, Nina, Ramshaw, Michael J., McCauley, Elizabeth, Kerr, Kathleen F., Kaufman, Joan, Nathan Kutz, J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10564881/ https://www.ncbi.nlm.nih.gov/pubmed/37816706 http://dx.doi.org/10.1038/s41398-023-02599-9 |
Ejemplares similares
-
Integrated Evolutionary Learning: An Artificial Intelligence Approach to Joint Learning of Features and Hyperparameters for Optimized, Explainable Machine Learning
por: de Lacy, Nina, et al.
Publicado: (2022) -
Multilevel Mapping of Sexual Dimorphism in Intrinsic Functional Brain Networks
por: de Lacy, Nina, et al.
Publicado: (2019) -
Predicting new onset thought disorder in early adolescence with optimized deep learning implicates environmental-putamen interactions
por: de Lacy, Nina, et al.
Publicado: (2023) -
Unlocking an acute psychiatric ward: open doors, absent patients?
por: Smith, Damian, et al.
Publicado: (2018) -
Predicting cholangiocarcinoma in primary sclerosing cholangitis: using artificial intelligence, clinical and laboratory data
por: Hu, Chang, et al.
Publicado: (2023)