Cargando…

The degradation during recycling of polyamide 6 produced by anionic ring-opening polymerization of ε-caprolactam

As the plastics industry continues to grow, the amount of plastic waste is also increasing. The European Union is controlling plastic waste through various regulations, focusing primarily on recyclability. A good alternative to traditional thermoset composites is thermoplastic polyamide 6 composites...

Descripción completa

Detalles Bibliográficos
Autores principales: Semperger, Orsolya Viktória, Suplicz, András
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10564943/
https://www.ncbi.nlm.nih.gov/pubmed/37816784
http://dx.doi.org/10.1038/s41598-023-44314-0
Descripción
Sumario:As the plastics industry continues to grow, the amount of plastic waste is also increasing. The European Union is controlling plastic waste through various regulations, focusing primarily on recyclability. A good alternative to traditional thermoset composites is thermoplastic polyamide 6 composites produced by Thermoplastic Resin Transfer Molding (T-RTM). Polyamide 6 has high strength and is produced by in-situ anionic ring-opening polymerization in T-RTM. Products made with this technology can replace traditional thermoset composites in many areas, which greatly increases recyclability. In this paper, the recyclability of the high molecular weight polyamide 6 matrix material of T-RTM composites is investigated. Products were mechanically recycled and then processed by injection molding. Thermal, mechanical and rheological properties of the samples were compared with the properties of the original product, as well as a general injection molding–grade PA6. Results show that the parts prepared with this innovative technology can be mechanically recycled and reprocessed by injection molding without a processing aid. After reprocessing, a significant reduction in properties is observed due to degradation, but the properties of the resulting product are in good agreement with those of a conventional commercially available injection molding grade PA6 material.