Cargando…
6IMPOSE: bridging the reality gap in 6D pose estimation for robotic grasping
6D pose recognition has been a crucial factor in the success of robotic grasping, and recent deep learning based approaches have achieved remarkable results on benchmarks. However, their generalization capabilities in real-world applications remain unclear. To overcome this gap, we introduce 6IMPOSE...
Autores principales: | Cao, Hongpeng, Dirnberger, Lukas, Bernardini, Daniele, Piazza, Cristina, Caccamo, Marco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10565011/ https://www.ncbi.nlm.nih.gov/pubmed/37830110 http://dx.doi.org/10.3389/frobt.2023.1176492 |
Ejemplares similares
-
Developing Intelligent Robots that Grasp Affordance
por: Loeb, Gerald E.
Publicado: (2022) -
Editorial: Bridging the Gap Between the Lab and the Real World: Future Perspectives for Legged Robots
por: Focchi, Michele, et al.
Publicado: (2020) -
Editorial: Robotic grasping and manipulation of deformable objects
por: Bimbo, Joao, et al.
Publicado: (2023) -
Learning-based robotic grasping: A review
por: Xie, Zhen, et al.
Publicado: (2023) -
On-Orbit Robotic Grasping of a Spent Rocket Stage: Grasp Stability Analysis and Experimental Results
por: Mavrakis, Nikos, et al.
Publicado: (2021)