Cargando…
Dolphin social phenotypes vary in response to food availability but not the North Atlantic Oscillation index
Social behaviours can allow individuals to flexibly respond to environmental change, potentially buffering adverse effects. However, individuals may respond differently to the same environmental stimulus, complicating predictions for population-level response to environmental change. Here, we show t...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10565371/ https://www.ncbi.nlm.nih.gov/pubmed/37817593 http://dx.doi.org/10.1098/rspb.2023.1187 |
Sumario: | Social behaviours can allow individuals to flexibly respond to environmental change, potentially buffering adverse effects. However, individuals may respond differently to the same environmental stimulus, complicating predictions for population-level response to environmental change. Here, we show that bottlenose dolphins (Tursiops truncatus) alter their social behaviour at yearly and monthly scales in response to a proxy for food availability (salmon abundance) but do not respond to variation in a proxy for climate (the North Atlantic Oscillation index). There was also individual variation in plasticity for gregariousness and connectedness to distant parts of the social network, although these traits showed limited repeatability. By contrast, individuals showed consistent differences in clustering with their immediate social environment at the yearly scale but no individual variation in plasticity for this trait at either timescale. These results indicate that social behaviour in free-ranging cetaceans can be highly resource dependent with individuals increasing their connectedness over short timescales but possibly reducing their wider range of connection at longer timescales. Some social traits showed more individual variation in plasticity or mean behaviour than others, highlighting how predictions for the responses of populations to environmental variation must consider the type of individual variation present in the population. |
---|