Cargando…
Gradient-based feature-attribution explainability methods for spiking neural networks
INTRODUCTION: Spiking neural networks (SNNs) are a model of computation that mimics the behavior of biological neurons. SNNs process event data (spikes) and operate more sparsely than artificial neural networks (ANNs), resulting in ultra-low latency and small power consumption. This paper aims to ad...
Autores principales: | Bitar, Ammar, Rosales, Rafael, Paulitsch, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10565802/ https://www.ncbi.nlm.nih.gov/pubmed/37829721 http://dx.doi.org/10.3389/fnins.2023.1153999 |
Ejemplares similares
-
A Curiosity-Based Learning Method for Spiking Neural Networks
por: Shi, Mengting, et al.
Publicado: (2020) -
Corrigendum: A Curiosity-Based Learning Method for Spiking Neural Networks
por: Shi, Mengting, et al.
Publicado: (2020) -
Explaining cocktail party effect and McGurk effect with a spiking neural network improved by Motif-topology
por: Jia, Shuncheng, et al.
Publicado: (2023) -
Spiking neural network with working memory can integrate and rectify spatiotemporal features
por: Chen, Yi, et al.
Publicado: (2023) -
Effects of Spike Anticipation on the Spiking Dynamics of Neural Networks
por: de Santos-Sierra, Daniel, et al.
Publicado: (2015)