Cargando…
Using Data-Driven Learning to Predict and Control the Outcomes of Inorganic Materials Synthesis
[Image: see text] The design of inorganic materials for various applications critically depends on our ability to manipulate their synthesis in a rational, robust, and controllable fashion. Different from the conventional trial-and-error approach, data-driven techniques such as the design of experim...
Autores principales: | Williamson, Emily M., Brutchey, Richard L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10565808/ https://www.ncbi.nlm.nih.gov/pubmed/37767941 http://dx.doi.org/10.1021/acs.inorgchem.3c02697 |
Ejemplares similares
-
Predictive
Synthesis of Copper Selenides Using a Multidimensional
Phase Map Constructed with a Data-Driven Classifier
por: Williamson, Emily M., et al.
Publicado: (2023) -
Inorganic materials synthesis
por: Winter, Charles H, et al.
Publicado: (1999) -
Towards Predictive Synthesis of Inorganic Materials Using Network Science
por: Aziz, Alex, et al.
Publicado: (2021) -
Predicting Synthesizability
using Machine Learning
on Databases of Existing Inorganic Materials
por: Zhu, Ruiming, et al.
Publicado: (2023) -
Thermodynamic limit for synthesis of metastable inorganic materials
por: Aykol, Muratahan, et al.
Publicado: (2018)