Cargando…
Big data, small explanatory and predictive power: Lessons from random forest modeling of on-farm yield variability and implications for data-driven agronomy
CONTEXT: Collection and analysis of large volumes of on-farm production data are widely seen as key to understanding yield variability among farmers and improving resource-use efficiency. OBJECTIVE: The aim of this study was to assess the performance of statistical and machine learning methods to ex...
Autores principales: | Silva, João Vasco, Heerwaarden, Joost van, Reidsma, Pytrik, Laborte, Alice G., Tesfaye, Kindie, Ittersum, Martin K. van |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Scientific Pub. Co
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10565834/ https://www.ncbi.nlm.nih.gov/pubmed/37840838 http://dx.doi.org/10.1016/j.fcr.2023.109063 |
Ejemplares similares
-
Sustainable development goal 2: Improved targets and indicators for agriculture and food security
por: Gil, Juliana Dias Bernardes, et al.
Publicado: (2018) -
Advances in agronomy /
Publicado: (1949) -
Dictionary of agronomy
por: Somani, L. L.
Publicado: (1989) -
Plant agronomy, leaf ecophysiology, yield and quality data of interspecific grafted Coffea arabica across an elevation gradient
por: Koutouleas, Athina, et al.
Publicado: (2023) -
Introduction to agronomy : food, crops, and environment /
por: Sheaffer, Craig C.
Publicado: (2009)