Cargando…
Dose distribution prediction for head-and-neck cancer radiotherapy using a generative adversarial network: influence of input data
PURPOSE: A three-dimensional deep generative adversarial network (GAN) was used to predict dose distributions for locally advanced head and neck cancer radiotherapy. Given the labor- and time-intensive nature of manual planning target volume (PTV) and organ-at-risk (OAR) segmentation, we investigate...
Autores principales: | Gu, Xiaojin, Strijbis, Victor I. J., Slotman, Ben J., Dahele, Max R., Verbakel, Wilko F. A. R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10565853/ https://www.ncbi.nlm.nih.gov/pubmed/37829347 http://dx.doi.org/10.3389/fonc.2023.1251132 |
Ejemplares similares
-
Ultra-High Dose Rate Transmission Beam Proton Therapy for Conventionally Fractionated Head and Neck Cancer: Treatment Planning and Dose Rate Distributions
por: van Marlen, Patricia, et al.
Publicado: (2021) -
Deep Learning for Automated Elective Lymph Node Level Segmentation for Head and Neck Cancer Radiotherapy
por: Strijbis, Victor I. J., et al.
Publicado: (2022) -
Single-fraction 34 Gy Lung Stereotactic Body Radiation Therapy Using Proton Transmission Beams: FLASH-dose Calculations and the Influence of Different Dose-rate Methods and Dose/Dose-rate Thresholds
por: van Marlen, Patricia, et al.
Publicado: (2022) -
Can knowledge-based DVH predictions be used for automated, individualized quality assurance of radiotherapy treatment plans?
por: Tol, Jim P., et al.
Publicado: (2015) -
Influence of Beam Angle on Normal Tissue Complication Probability of Knowledge-Based Head and Neck Cancer Proton Planning
por: Hytönen, Roni, et al.
Publicado: (2022)