Cargando…
Network-based prediction approach for cancer-specific driver missense mutations using a graph neural network
BACKGROUND: In cancer genomic medicine, finding driver mutations involved in cancer development and tumor growth is crucial. Machine-learning methods to predict driver missense mutations have been developed because variants are frequently detected by genomic sequencing. However, even though the abno...
Autores principales: | Hatano, Narumi, Kamada, Mayumi, Kojima, Ryosuke, Okuno, Yasushi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10565986/ https://www.ncbi.nlm.nih.gov/pubmed/37817080 http://dx.doi.org/10.1186/s12859-023-05507-6 |
Ejemplares similares
-
Computational Approaches to Prioritize Cancer Driver Missense Mutations
por: Zhao, Feiyang, et al.
Publicado: (2018) -
Identification of Cancer Driver Genes by Integrating Multiomics Data with Graph Neural Networks
por: Song, Hongzhi, et al.
Publicado: (2023) -
A graph neural network approach for molecule carcinogenicity prediction
por: Fradkin, Philip, et al.
Publicado: (2022) -
Predicting residue‐specific qualities of individual protein models using residual neural networks and graph neural networks
por: Zhao, Chenguang, et al.
Publicado: (2022) -
kGCN: a graph-based deep learning framework for chemical structures
por: Kojima, Ryosuke, et al.
Publicado: (2020)