Cargando…
Causal inference and observational data
Observational studies using causal inference frameworks can provide a feasible alternative to randomized controlled trials. Advances in statistics, machine learning, and access to big data facilitate unraveling complex causal relationships from observational data across healthcare, social sciences,...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10566026/ https://www.ncbi.nlm.nih.gov/pubmed/37821812 http://dx.doi.org/10.1186/s12874-023-02058-5 |
Sumario: | Observational studies using causal inference frameworks can provide a feasible alternative to randomized controlled trials. Advances in statistics, machine learning, and access to big data facilitate unraveling complex causal relationships from observational data across healthcare, social sciences, and other fields. However, challenges like evaluating models and bias amplification remain. |
---|