Cargando…

Causal inference and observational data

Observational studies using causal inference frameworks can provide a feasible alternative to randomized controlled trials. Advances in statistics, machine learning, and access to big data facilitate unraveling complex causal relationships from observational data across healthcare, social sciences,...

Descripción completa

Detalles Bibliográficos
Autores principales: Olier, Ivan, Zhan, Yiqiang, Liang, Xiaoyu, Volovici, Victor
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10566026/
https://www.ncbi.nlm.nih.gov/pubmed/37821812
http://dx.doi.org/10.1186/s12874-023-02058-5
Descripción
Sumario:Observational studies using causal inference frameworks can provide a feasible alternative to randomized controlled trials. Advances in statistics, machine learning, and access to big data facilitate unraveling complex causal relationships from observational data across healthcare, social sciences, and other fields. However, challenges like evaluating models and bias amplification remain.