Cargando…
Causal inference and observational data
Observational studies using causal inference frameworks can provide a feasible alternative to randomized controlled trials. Advances in statistics, machine learning, and access to big data facilitate unraveling complex causal relationships from observational data across healthcare, social sciences,...
Autores principales: | Olier, Ivan, Zhan, Yiqiang, Liang, Xiaoyu, Volovici, Victor |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10566026/ https://www.ncbi.nlm.nih.gov/pubmed/37821812 http://dx.doi.org/10.1186/s12874-023-02058-5 |
Ejemplares similares
-
Causal Inference for Heterogeneous Data and Information Theory
por: Hlaváčková-Schindler, Kateřina
Publicado: (2023) -
Causal inference with observational data in addiction research
por: Chan, Gary C. K., et al.
Publicado: (2022) -
Causal inference with observational data: the need for triangulation of evidence
por: Hammerton, Gemma, et al.
Publicado: (2021) -
Causal inference and effect estimation using observational data
por: Igelström, Erik, et al.
Publicado: (2022) -
The “Why” in Mental Health, Stigma, and Addictive Behaviors: Causal Inferences in Applied Settings
por: Sánchez-Iglesias, Iván
Publicado: (2023)