Cargando…

RFC2 promotes aerobic glycolysis and progression of colorectal cancer

BACKGROUND: Replication factor C subunit 2 (RFC2) participates in the growth and metastasis of various malignancies. Our study investigated the roles of RFC2 in colorectal cancer (CRC). RESULTS: RFC2 expression was upregulated in CRC tissues and cells. High RFC2 expression was associated with poor p...

Descripción completa

Detalles Bibliográficos
Autores principales: Lou, Fuchen, Zhang, Mingbao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10566032/
https://www.ncbi.nlm.nih.gov/pubmed/37821801
http://dx.doi.org/10.1186/s12876-023-02984-0
Descripción
Sumario:BACKGROUND: Replication factor C subunit 2 (RFC2) participates in the growth and metastasis of various malignancies. Our study investigated the roles of RFC2 in colorectal cancer (CRC). RESULTS: RFC2 expression was upregulated in CRC tissues and cells. High RFC2 expression was associated with poor prognosis. Knockdown RFC2 inhibited proliferation, induced apoptosis, and suppressed migration and invasion of CRC cells. CREB5 was a transcription factor of RFC2, and CREB5 knockdown suppressed RFC2 expression. Furthermore, RFC2 promoted aerobic glycolysis and MET/PI3K/AKT/mTOR pathway. CONCLUSION: RFC2 promoted the progression of CRC cells via activating aerobic glycolysis and the MET/PI3K/AKT/mTOR pathway. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12876-023-02984-0.