Cargando…

Are non-starters accumulating enough load compared with starters? Examining load, wellness, and training/match ratios of a European professional soccer team

BACKGROUND: The aims of the study were to: (i) compare accumulated load and wellness between starters and non-starters of a European professional soccer team; (ii) analyze the relationships between wellness and load measures and; (iii) compare training/match ratio (TMr) of external and internal load...

Descripción completa

Detalles Bibliográficos
Autores principales: Oliveira, Rafael, Canário-Lemos, Rui, Morgans, Ryland, Rafael-Moreira, Tiago, Vilaça-Alves, José, Brito, João Paulo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10566091/
https://www.ncbi.nlm.nih.gov/pubmed/37817275
http://dx.doi.org/10.1186/s13102-023-00743-y
Descripción
Sumario:BACKGROUND: The aims of the study were to: (i) compare accumulated load and wellness between starters and non-starters of a European professional soccer team; (ii) analyze the relationships between wellness and load measures and; (iii) compare training/match ratio (TMr) of external and internal load between starters and non-starters. METHODS: Ten players were considered starters while seven were classified as non-starters over a 16-week period in which six training sessions and match day (MD) were considered in each weekly micro-cycle. The following measures were used: wellness (fatigue, quality of sleep, muscle soreness, stress, and mood); load (rated of perceived exertion (RPE), session-RPE (s-RPE), high-speed running (HSR), sprinting, accelerations (ACC) and decelerations (DEC)). Accumulated wellness/load were calculated by summing all training and match sessions, while TMr was calculated by dividing accumulated training load by match data for all load measures and each player. Mann–Whitney U test was used for wellness variables, while independent T-test was used for the remaining variables to compare groups. Moreover, relationships among variables were explored using the Spearman’s Rho correlation coefficient. RESULTS: The main results showed that non-starters presented higher significant values for fatigue (p < 0.019; g = 0.24) and lower significant values for duration (p < 0.006; ES = 1.81) and s-RPE (p < 0.001; ES = 2.69) when compared to starters. Moreover, positive and very large correlation was found between quality of sleep and RPE, while negative and very large correlation were found between stress and deceleration, and mood and deceleration (all, p < 0.05). Finally, non-starters presented higher values in all TMr than starters, namely, RPE (p = 0.001; g = 1.96), s-RPE (p = 0.002; g = 1.77), HSR (p = 0.001; g = 2.02), sprinting (p = 0.002; g = 4.23), accelerations (p = 0.001; g = 2.72), decelerations (p < 0.001; g = 3.44), and duration (p = 0.003; g = 2.27). CONCLUSIONS: In conclusion, this study showed that non-starters produced higher TMr in all examined variables despite the lower match and training durations when compared with starters, suggesting that physical load was adjusted appropriately. Additionally, higher RPE was associated with improved sleep while higher number of decelerations were associated with decreased wellness, namely, stress and mood for non-starters.