Cargando…
Machine learning model for the prediction of gram-positive and gram-negative bacterial bloodstream infection based on routine laboratory parameters
BACKGROUND: Bacterial bloodstream infection is responsible for the majority of cases of sepsis and septic shock. Early recognition of the causative pathogen is pivotal for administration of adequate empiric antibiotic therapy and for the survival of the patients. In this study, we developed a feasib...
Autores principales: | Zhang, Fan, Wang, Hao, Liu, Liyu, Su, Teng, Ji, Bing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10566101/ https://www.ncbi.nlm.nih.gov/pubmed/37817106 http://dx.doi.org/10.1186/s12879-023-08602-4 |
Ejemplares similares
-
Routine laboratory biomarkers used to predict Gram-positive or Gram-negative bacteria involved in bloodstream infections
por: Dambroso-Altafini, Daniela, et al.
Publicado: (2022) -
Combined procalcitonin and hemogram parameters contribute to early differential diagnosis of Gram‐negative/Gram‐positive bloodstream infections
por: Gao, Qiqing, et al.
Publicado: (2021) -
Procalcitonin Levels in Gram-Positive, Gram-Negative, and Fungal Bloodstream Infections
por: Leli, Christian, et al.
Publicado: (2015) -
Neither Single nor a Combination of Routine Laboratory Parameters can Discriminate between Gram-positive and Gram-negative Bacteremia
por: Ratzinger, Franz, et al.
Publicado: (2015) -
Morphological and cytokine profiles as key parameters to distinguish between Gram-negative and Gram-positive bacterial keratitis
por: Konstantopoulos, Aris, et al.
Publicado: (2020)