Cargando…
disperseNN2: a neural network for estimating dispersal distance from georeferenced polymorphism data
Spatial genetic variation is shaped in part by an organism’s dispersal ability. We present a deep learning tool, disperseNN2, for estimating the mean per-generation dispersal distance from georeferenced polymorphism data. Our neural network performs feature extraction on pairs of genotypes, and uses...
Autores principales: | Smith, Chris C. R., Kern, Andrew D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10566146/ https://www.ncbi.nlm.nih.gov/pubmed/37817115 http://dx.doi.org/10.1186/s12859-023-05522-7 |
Ejemplares similares
-
disperseNN2: a neural network for estimating dispersal distance from georeferenced polymorphism data
por: Smith, Chris C. R., et al.
Publicado: (2023) -
Automated NMR relaxation dispersion data analysis using NESSY
por: Bieri, Michael, et al.
Publicado: (2011) -
Ali-Bey - an open collaborative georeferencing web application
por: Marcer, Arnald, et al.
Publicado: (2022) -
SeqPredNN: a neural network that generates protein sequences that fold into specified tertiary structures
por: Lategan, F. Adriaan, et al.
Publicado: (2023) -
Dispersal inference from population genetic variation using a convolutional neural network
por: Smith, Chris C R, et al.
Publicado: (2023)