Cargando…

FOXA1/MND1/TKT axis regulates gastric cancer progression and oxaliplatin sensitivity via PI3K/AKT signaling pathway

BACKGROUND: Drug resistance is a main factor affecting the chemotherapy efficacy of gastric cancer (GC), in which meiosis plays an important role. Therefore, it is urgent to explore the effect of meiosis related genes on chemotherapy resistance. METHODS: The expression of meiotic nuclear divisions 1...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Xiaosi, Zhou, Shuai, Li, Haohao, Wu, Zehui, Wang, Ye, Meng, Lei, Chen, Zhangming, Wei, Zhijian, Pang, Qing, Xu, Aman
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10566187/
https://www.ncbi.nlm.nih.gov/pubmed/37817120
http://dx.doi.org/10.1186/s12935-023-03077-4
Descripción
Sumario:BACKGROUND: Drug resistance is a main factor affecting the chemotherapy efficacy of gastric cancer (GC), in which meiosis plays an important role. Therefore, it is urgent to explore the effect of meiosis related genes on chemotherapy resistance. METHODS: The expression of meiotic nuclear divisions 1 (MND1) in GC was detected by using TCGA and clinical specimens. In vitro and in vivo assays were used to investigate the effects of MND1. The molecular mechanism was determined using luciferase reporter assay, CO-IP and mass spectrometry (MS). RESULTS: Through bioinformatics, we found that MND1 was highly expressed in platinum-resistant samples. In vitro experiments showed that interference of MND1 significantly inhibited the progression of GC and increased the sensitivity to oxaliplatin. MND1 was significantly higher in 159 GC tissues in comparison with the matched adjacent normal tissues. In addition, overexpression of MND1 was associated with worse survival, advanced TNM stage, and lower pathological grade in patients with GC. Further investigation revealed that forkhead box protein A1 (FOXA1) directly binds to the promoter of MND1 to inhibit its transcription. CO-IP and MS assays showed that MND1 was coexpressed with transketolase (TKT). In addition,TKT activated the PI3K/AKT signaling axis and enhanced the glucose uptake and lactate production in GC cells. CONCLUSIONS: Our results confirm that FOXA1 inhibits the expression of MND1, which can directly bind to TKT to promote GC progression and reduce oxaliplatin sensitivity through the PI3K/AKT signaling pathway. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12935-023-03077-4.