Cargando…
Use of a multi-phased approach to identify and address facilitators and barriers to the implementation of a population-wide genomic screening program
INTRODUCTION: Population-wide genomic screening for CDC Tier-1 conditions offers the ability to identify the 1–2% of the US population at increased risk for Hereditary Breast and Ovarian Cancer, Lynch Syndrome, and Familial Hypercholesterolemia. Implementation of population-wide screening programs i...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10566189/ https://www.ncbi.nlm.nih.gov/pubmed/37821977 http://dx.doi.org/10.1186/s43058-023-00500-9 |
Sumario: | INTRODUCTION: Population-wide genomic screening for CDC Tier-1 conditions offers the ability to identify the 1–2% of the US population at increased risk for Hereditary Breast and Ovarian Cancer, Lynch Syndrome, and Familial Hypercholesterolemia. Implementation of population-wide screening programs is highly complex, requiring engagement of diverse collaborators and implementation teams. Implementation science offers tools to promote integration of these programs through the identification of determinants of success and strategies to address potential barriers. METHODS: Prior to launching the program, we conducted a pre-implementation survey to assess anticipated barriers and facilitators to reach, effectiveness, adoption, implementation, and maintenance (RE-AIM), among 51 work group members (phase 1). During the first year of program implementation, we completed coding of 40 work group meetings guided by the Consolidated Framework for Implementation Research (CFIR) (phase 2). We matched the top barriers to implementation strategies identified during phase 2 using the CFIR-ERIC (Expert Recommendation for Implementing Change) matching tool. RESULTS: Staffing and workload concerns were listed as the top barrier in the pre-implementation phase of the program. Top barriers during implementation included adaptability (n = 8, 20%), complexity (n = 14, 35%), patient needs and resources (n = 9, 22.5%), compatibility (n = 11, 27.5%), and self-efficacy (n = 9, 22.5%). We identified 16 potential implementation strategies across six ERIC clusters to address these barriers and operationalized these strategies for our specific setting and program needs. CONCLUSION: Our findings provide an example of successful use of the CFIR-ERIC tool to guide implementation of a population-wide genomic screening program. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s43058-023-00500-9. |
---|