Cargando…
Superior protein thermophilicity prediction with protein language model embeddings
Protein thermostability is important in many areas of biotechnology, including enzyme engineering and protein-hybrid optoelectronics. Ever-growing protein databases and information on stability at different temperatures allow the training of machine learning models to predict whether proteins are th...
Autores principales: | Haselbeck, Florian, John, Maura, Zhang, Yuqi, Pirnay, Jonathan, Fuenzalida-Werner, Juan Pablo, Costa, Rubén D, Grimm, Dominik G |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10566323/ https://www.ncbi.nlm.nih.gov/pubmed/37829176 http://dx.doi.org/10.1093/nargab/lqad087 |
Ejemplares similares
-
Contrastive learning on protein embeddings enlightens midnight zone
por: Heinzinger, Michael, et al.
Publicado: (2022) -
Morbillivirus and henipavirus attachment protein cytoplasmic domains
differently affect protein expression, fusion support and particle
assembly
por: Sawatsky, Bevan, et al.
Publicado: (2016) -
Supervised learning with word embeddings derived from PubMed captures latent knowledge about protein kinases and cancer
por: Ravanmehr, Vida, et al.
Publicado: (2021) -
Evaluating the role of phage-shock protein A in Burkholderia pseudomallei
por: Southern, Stephanie J., et al.
Publicado: (2015) -
easyPheno: An easy-to-use and easy-to-extend Python framework for phenotype prediction using Bayesian optimization
por: Haselbeck, Florian, et al.
Publicado: (2023)