Cargando…
A convolutional neural network-based system to estimate the arterial plasma radioactivity curve in (18)F-FDG dynamic brain PET study
PURPOSE: Quantitative images of metabolic activity can be derived through dynamic PET. However, the conventional approach necessitates invasive blood sampling to acquire the input function, thus limiting its noninvasive nature. The aim of this study was to devise a system based on convolutional neur...
Autores principales: | Kawauchi, Keisuke, Saito, Mui, Nishigami, Kentaro, Katoh, Chietsugu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10566592/ https://www.ncbi.nlm.nih.gov/pubmed/37642499 http://dx.doi.org/10.1097/MNM.0000000000001752 |
Ejemplares similares
-
A convolutional neural network-based system to classify patients using FDG PET/CT examinations
por: Kawauchi, Keisuke, et al.
Publicado: (2020) -
A convolutional neural network-based system to prevent patient misidentification in FDG-PET examinations
por: Kawauchi, Keisuke, et al.
Publicado: (2019) -
Post-reconstruction enhancement of [(18)F]FDG PET images with a convolutional neural network
por: Ly, John, et al.
Publicado: (2021) -
Prediction of Neoadjuvant Chemotherapy Response in Osteosarcoma Using Convolutional Neural Network of Tumor Center (18)F-FDG PET Images
por: Kim, Jingyu, et al.
Publicado: (2021) -
Clinical role of (18)F-FDG PET/CT for detection of radioactive iodine refractory differentiated thyroid cancer
por: Tang, Xiaowei, et al.
Publicado: (2023)