Cargando…

Genomic diversity and population structure of teosinte (Zea spp.) and its conservation implications

The wild species of the genus Zea commonly named teosintes, comprise nine different taxa, distributed from northern Mexico to Costa Rica. Although this genus of plants has been extensively studied from a morphological, ecogeographical and genetic point of view, most contributions have been limited t...

Descripción completa

Detalles Bibliográficos
Autores principales: Rivera-Rodríguez, Diana María, Mastretta-Yanes, Alicia, Wegier, Ana, De la Cruz Larios, Lino, Santacruz-Ruvalcaba, Fernando, Ruiz Corral, José Ariel, Hernández, Benjamín, Sánchez González, José de Jesús
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10566683/
https://www.ncbi.nlm.nih.gov/pubmed/37819917
http://dx.doi.org/10.1371/journal.pone.0291944
Descripción
Sumario:The wild species of the genus Zea commonly named teosintes, comprise nine different taxa, distributed from northern Mexico to Costa Rica. Although this genus of plants has been extensively studied from a morphological, ecogeographical and genetic point of view, most contributions have been limited to the study of a few populations and taxa. To understand the great variability that exists between and within teosinte species, it is necessary to include the vast majority of known populations. In this context, the objective of this work was to evaluate the diversity and genomic structure of 276 teosinte populations. Molecular analyzes were performed with 3,604 plants and with data from 33,929 SNPs. The levels of genetic diversity by taxonomic group show a marked difference between species, races and sections, where the highest values of genomic diversity was found in ssp. parviglumis and ssp. mexicana. The lower values were obtained for the Luxuriantes section as well as ssp. huehuetenagensis of the section Zea. The results of structure show that there is a great genetic differentiation in all the taxonomic groups considered. For ssp. parviglumis and mexicana, which are the taxa with the largest number of populations, a marked genomic differentiation was found that is consistent with their geographic distribution patterns. These results showed a loss of diversity in several teosinte populations, making a strong case for further collection, and ex situ and in situ conservation. Also, this study highlights the importance of integrating genomic diversity and structure for the applications of conservation and management.