Cargando…
Cracking the Back: Predicting Outcomes of Spinal Fusion Surgery using Machine Learning
Autores principales: | Janhofer, David, Chen, Yunchan, Black, Grant, Vaeth, Anna, Otterburn, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10566908/ http://dx.doi.org/10.1097/01.GOX.0000992432.15041.bf |
Ejemplares similares
-
Protecting Your Back and Your Wallet: Decreased Complications and Healthcare Costs Associated with Prophylactic Muscle Flap Coverage After Spinal Fusion
por: Black, Grant, et al.
Publicado: (2023) -
A Multi-Decade, Multi-institutional Propensity Score Matched Analysis of Recurrence-Free Survival and Mortality in Post-mastectomy Patients with and without Immediate Breast Reconstruction
por: Chadab, Tara, et al.
Publicado: (2023) -
The Fat and the Furious: MCF-7 Breast Cancer Cell Proliferation Trends in Fat Grafting Lipoaspirate Conditioned Media
por: Chen, Yunchan, et al.
Publicado: (2023) -
Charting Outcomes: The Correlation Between Area of Deprivation Index and Disparities in Breast Reconstruction
por: Huang, Hao, et al.
Publicado: (2023) -
Stunted Sensitivity: Measuring the Negative Effects of Chemotherapy and Radiation on Breast Sensation after Mastectomy and Reconstruction
por: Black, Grant, et al.
Publicado: (2023)