Cargando…

Radial Expansion Favors the Burrowing Behavior of Urechis unicinctus

Urechis unicinctus can utilize the ability of large deformation to advance in sands by radial expansion, just using a small force. However, the large deformation of U. unicinctus skin and the discrete nature of the sands make it hard to analyze this process quantitatively. In this study, we aim to u...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Shanpeng, Zhang, Yun, Zhang, Ruihua, Liu, Jianlin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10567378/
https://www.ncbi.nlm.nih.gov/pubmed/37829521
http://dx.doi.org/10.1155/2023/2478606
Descripción
Sumario:Urechis unicinctus can utilize the ability of large deformation to advance in sands by radial expansion, just using a small force. However, the large deformation of U. unicinctus skin and the discrete nature of the sands make it hard to analyze this process quantitatively. In this study, we aim to uncover the burrowing mechanism of U. unicinctus in granular sediments by combining discrete and finite elements. We observe that U. unicinctus will expand radially at the head, and then the head will shrink to move forward. The radial expansion will collapse the sands and let them flow, making it easy to advance. U. unicinctus mainly relies on the skin's large deformation and sufficient pressure to achieve radial expansion. Thus, we first establish the large deformation constitutive model of the skin. The stress–strain relationship can be expressed by the Yeoh model. Meanwhile, the pressure required for radial expansion is indirectly measured by the balloon experiment. To study the effect of radial expansion on the burrowing behavior, we use the finite element method–discrete element method (FEM–DEM) coupling model to simulate the expansion process of burrowing. The simulated pressure for radial expansion is very close to the experimental data, verifying the reliability of the simulation. The results show that the expansion can drastically reduce the pressure of sand particles on the head front face by 97.1% ± 0.6%, significantly decreasing the difficulty of burrowing. This unique underwater burrow method of U. unicinctus can provide new ideas for engineering burrowing devices in soft soil, especially for granular sediments.