Cargando…

piRNA processing by a trimeric Schlafen-domain nuclease

Transposable elements are genomic parasites that expand within and spread between genomes(1). PIWI proteins control transposon activity, notably in the germline(2,3). These proteins recognize their targets through small RNA co-factors named PIWI-interacting RNAs (piRNAs), making piRNA biogenesis a k...

Descripción completa

Detalles Bibliográficos
Autores principales: Podvalnaya, Nadezda, Bronkhorst, Alfred W., Lichtenberger, Raffael, Hellmann, Svenja, Nischwitz, Emily, Falk, Torben, Karaulanov, Emil, Butter, Falk, Falk, Sebastian, Ketting, René F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10567574/
https://www.ncbi.nlm.nih.gov/pubmed/37758951
http://dx.doi.org/10.1038/s41586-023-06588-2
_version_ 1785119158619340800
author Podvalnaya, Nadezda
Bronkhorst, Alfred W.
Lichtenberger, Raffael
Hellmann, Svenja
Nischwitz, Emily
Falk, Torben
Karaulanov, Emil
Butter, Falk
Falk, Sebastian
Ketting, René F.
author_facet Podvalnaya, Nadezda
Bronkhorst, Alfred W.
Lichtenberger, Raffael
Hellmann, Svenja
Nischwitz, Emily
Falk, Torben
Karaulanov, Emil
Butter, Falk
Falk, Sebastian
Ketting, René F.
author_sort Podvalnaya, Nadezda
collection PubMed
description Transposable elements are genomic parasites that expand within and spread between genomes(1). PIWI proteins control transposon activity, notably in the germline(2,3). These proteins recognize their targets through small RNA co-factors named PIWI-interacting RNAs (piRNAs), making piRNA biogenesis a key specificity-determining step in this crucial genome immunity system. Although the processing of piRNA precursors is an essential step in this process, many of the molecular details remain unclear. Here, we identify an endoribonuclease, precursor of 21U RNA 5′-end cleavage holoenzyme (PUCH), that initiates piRNA processing in the nematode Caenorhabditis elegans. Genetic and biochemical studies show that PUCH, a trimer of Schlafen-like-domain proteins (SLFL proteins), executes 5′-end piRNA precursor cleavage. PUCH-mediated processing strictly requires a 7-methyl-G cap (m(7)G-cap) and a uracil at position three. We also demonstrate how PUCH interacts with PETISCO, a complex that binds to piRNA precursors(4), and that this interaction enhances piRNA production in vivo. The identification of PUCH concludes the search for the 5′-end piRNA biogenesis factor in C. elegans and uncovers a type of RNA endonuclease formed by three SLFL proteins. Mammalian Schlafen (SLFN) genes have been associated with immunity(5), exposing a molecular link between immune responses in mammals and deeply conserved RNA-based mechanisms that control transposable elements.
format Online
Article
Text
id pubmed-10567574
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-105675742023-10-13 piRNA processing by a trimeric Schlafen-domain nuclease Podvalnaya, Nadezda Bronkhorst, Alfred W. Lichtenberger, Raffael Hellmann, Svenja Nischwitz, Emily Falk, Torben Karaulanov, Emil Butter, Falk Falk, Sebastian Ketting, René F. Nature Article Transposable elements are genomic parasites that expand within and spread between genomes(1). PIWI proteins control transposon activity, notably in the germline(2,3). These proteins recognize their targets through small RNA co-factors named PIWI-interacting RNAs (piRNAs), making piRNA biogenesis a key specificity-determining step in this crucial genome immunity system. Although the processing of piRNA precursors is an essential step in this process, many of the molecular details remain unclear. Here, we identify an endoribonuclease, precursor of 21U RNA 5′-end cleavage holoenzyme (PUCH), that initiates piRNA processing in the nematode Caenorhabditis elegans. Genetic and biochemical studies show that PUCH, a trimer of Schlafen-like-domain proteins (SLFL proteins), executes 5′-end piRNA precursor cleavage. PUCH-mediated processing strictly requires a 7-methyl-G cap (m(7)G-cap) and a uracil at position three. We also demonstrate how PUCH interacts with PETISCO, a complex that binds to piRNA precursors(4), and that this interaction enhances piRNA production in vivo. The identification of PUCH concludes the search for the 5′-end piRNA biogenesis factor in C. elegans and uncovers a type of RNA endonuclease formed by three SLFL proteins. Mammalian Schlafen (SLFN) genes have been associated with immunity(5), exposing a molecular link between immune responses in mammals and deeply conserved RNA-based mechanisms that control transposable elements. Nature Publishing Group UK 2023-09-27 2023 /pmc/articles/PMC10567574/ /pubmed/37758951 http://dx.doi.org/10.1038/s41586-023-06588-2 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Podvalnaya, Nadezda
Bronkhorst, Alfred W.
Lichtenberger, Raffael
Hellmann, Svenja
Nischwitz, Emily
Falk, Torben
Karaulanov, Emil
Butter, Falk
Falk, Sebastian
Ketting, René F.
piRNA processing by a trimeric Schlafen-domain nuclease
title piRNA processing by a trimeric Schlafen-domain nuclease
title_full piRNA processing by a trimeric Schlafen-domain nuclease
title_fullStr piRNA processing by a trimeric Schlafen-domain nuclease
title_full_unstemmed piRNA processing by a trimeric Schlafen-domain nuclease
title_short piRNA processing by a trimeric Schlafen-domain nuclease
title_sort pirna processing by a trimeric schlafen-domain nuclease
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10567574/
https://www.ncbi.nlm.nih.gov/pubmed/37758951
http://dx.doi.org/10.1038/s41586-023-06588-2
work_keys_str_mv AT podvalnayanadezda pirnaprocessingbyatrimericschlafendomainnuclease
AT bronkhorstalfredw pirnaprocessingbyatrimericschlafendomainnuclease
AT lichtenbergerraffael pirnaprocessingbyatrimericschlafendomainnuclease
AT hellmannsvenja pirnaprocessingbyatrimericschlafendomainnuclease
AT nischwitzemily pirnaprocessingbyatrimericschlafendomainnuclease
AT falktorben pirnaprocessingbyatrimericschlafendomainnuclease
AT karaulanovemil pirnaprocessingbyatrimericschlafendomainnuclease
AT butterfalk pirnaprocessingbyatrimericschlafendomainnuclease
AT falksebastian pirnaprocessingbyatrimericschlafendomainnuclease
AT kettingrenef pirnaprocessingbyatrimericschlafendomainnuclease